Posts in category Microbial & Environmental Genomics

Page 2 of 13

Guest Speakers Marlo Gottfurcht Longstreet and Dean Ornish Inspire Guests at JCVI‘s “Life at the Speed of Light” Gala

On October 18, J. Craig Venter Institute (JCVI) hosted our “Life at the Speed of Light” black tie gala featuring special guests Dean Ornish, MD, and Marlo Gottfurcht Longstreet. JCVI welcomed 200 community leaders, sponsors and supporters including Representative Scott Peters, Susan Taylor, Reena Horowitz, Linda Chester, Jack McGrory, Jessie Knight, Jr., Joye Blount, Wendy Walker, Randy Woods, Andrew and Erna Viterbi, Mary Ann Beyster, and JCVI Board Member Bill Walton and wife Lori.

Guests experienced our science first hand through various displays and had the opportunity to interact with many JCVI scientists to learn how advances in genomics are impacting our health and environment.

microbiome station

JCVI Scientists Manny Torralba and Stephanie Mounaud welcomed guests with a brief introduction to the palm microbiome by taking swabs and sharing aggregate population results midevening.

Following welcome remarks by J. Craig Venter, Ph.D., Founder & CEO of JCVI, Marlo Gottfurcht Longstreet shared her son Tanner’s battle with a Giloblastoma Brain Tumor. It is understood that the tumor developed as a result of a mutation in the TP53 tumor suppressor gene. Sadly, Tanner Jay Longstreet passed away in 2013 at the age of 11.

Marlo Gottfurcht Longstreet sharing her personal story about her son Tanner and ongoing work at the Tanner Project.

Marlo Gottfurcht Longstreet sharing her personal story about her son Tanner and ongoing work at the Tanner Project.

Personal tragedy turned mission for Marlo as she set out to do everything she could to better understand what afflicted Tanner, which gave rise to the Tanner Project at JCVI. Led by Nicholas Schork, Ph.D., the Tanner Project is what is referred to as an “N of 1” project – a single patient case study. Rather than go in for yearly checkups, the patient in the study is monitored daily so that any evidence of cancer can be detected at onset. The goal is to keep the study patient at what is referred to as stage 0. By closely monitoring the condition in this “N of 1” study, its application can be applied more broadly in personalized medicine – “N of 1 for everyone.”

Dr. Ornish discussed advances in personalized medicine and how simple behavioral changes can greatly affect patient outcomes. He addressed ideas presented in his most recent book, The Spectrum, suggesting diet and exercise are not all or nothing propositions. If today wasn’t a great food day, there is no reason tomorrow can’t be. This kind of thinking can greatly improve longevity and quality of life.

Dean Ornish speaking to gala attendees on advances in medicine.

Nobel Laureate Hamilton Smith (right) walks gala attendees through JCVI advances.

Rangers and the Re-Arrangers

The evening was rounded out with a delectable dinner, dancing, and gypsy jazz music by Seattle’s Rangers and the Re-Arrangers.

JCVI is grateful to its event sponsors – CapitalOne Bank, BioMed Realty, Synthetic Genomics, Inc., Human Longevity, Inc., Thermo Fisher Scientific, Gunderson Dettmer, ZGF, and Egon Zehnder – for their support. Thank you as well to our DNA gift bag sponsors: Way Better Snacks, GoodBelly, Kowalski Communications, La Jolla Playhouse, Lean & Green Café, and Travel Set Go.

JCVI remains committed to tackling today’s pressing medical and environmental concerns, and we continue to rely on your generosity to achieve our goals. For more information on funding needs and opportunities, please contact Katie Collins as [email protected].

JCVI Scientists Join NASA-Funded Astrobiology Research Teams

Scientists from J. Craig Venter Institute are part of teams awarded grants from NASA to “study the origins, evolution, distribution, and future life in the universe.” Dr. Christopher Dupont is part of a team led by the University of California, Riverside and will study chemical energy stored in rocks as a potential power source, while Dr. Shino Ishii will work with a team from NASA’s Jet Propulsion Laboratory looking at the habitability of extraterrestrial icy worlds.

Artist concept of an early Earth

Artist concept of an early Earth. Image Credit: NASA

From NASA’s Press Release:

NASA’s Jet Propulsion Laboratory, Pasadena, California. Team lead is Isik Kanik. Research will conduct laboratory experiments and field research in environments on Earth, such as The Cedars in Northern California, to understand the habitability of extraterrestrial icy worlds such as Europa, Ganymede and Enceladus.

University of California, Riverside. Team lead is Timothy Lyons. Research will examine the history of oxygen in Earth’s atmosphere and ocean between 3.2 and 0.7 billion years ago. This is a time range in which the amount of oxygen present is thought to have increased from almost nothing to the amounts present today. This work will address the question of how Earth has remained persistently inhabited through most of its dynamic history and would provide NASA exploration scientists a template to investigate the presence of habitable conditions on Mars and other planetary bodies.

See the complete release.

Trapping Microbes 750 miles north of the Arctic Circle

About 1% of all microbes are “culturable” in the lab. They are some of the most stubborn organisms requiring special and specific nutrients as well as optimal temperatures and conditions. So, how do we get the “unculturables” to be “culturable”? We make bacteria “traps”, where we take media, sandwich them between a membrane that cannot be penetrated by bacteria and another membrane that can be penetrated by bacteria. Bacteria can grow and migrate toward the trap and essentially get stuck within the membranes and we can cultivate them afterwards. What about bacteria that don’t migrate? We can account for these bacteria by taking them out of the soil, placing them in media and putting them back into the environment using devices called diffusion chambers. These diffusion chambers consist of two membranes that are able to hold bacteria and media yet are porous enough for nutrients and ions. Using these techniques we have already cultivated more than 15 previously uncultivated species. For year two of this project we intend to cultivate at least 90 new species for whole genome shotgun sequencing. WGS data from such new species will be incredibly useful in determining which metabolic pathways are present to allow these organisms to survive in such a harsh barren climate.

Diffusion Chambers

Diffusion Chambers

Setting Bacterial Traps

Setting Bacterial Traps

Traps Under Water

Traps Under Water

Thule, Greenland Year Two

Sequence data from the previous year allowed us to determine the overall microbial population in each site and this year we decided to focus on the Rich Lake site which seem to have representation of nearly all microbes found in the other sites. So lucky for us we only had to work on one site this year rather than six. This in itself had me excited to go back to Thule. After a five-hour flight on a military plane from BWI I finally arrived to Thule Greenland where we were greeted by the Colonel as well as other high ranking military officials at the hanger. Once I cleared the customs processing area, I arrived to the dorm where the other scientists were living. It was a little different from last year’s accommodations but nevertheless the luxuries of WI-FI, Internet and cable TV were all available. As I am anxious to get to the field and see the changes in the Rich Lake site, we were given some interesting news. That day was not a good day to travel to the site because a mother polar bear and her two cubs were spotted nearby not too long ago by military police. However, we managed to get other work done by preparing the schedule for the sampling, cultivation and other labwork.

 

The next few days consisted of preparing culture media, cultivation traps and diffusion chambers, and going out into the field (polar bear spray in hand; yes it’s a real thing!). We were extra careful in the field since there was quite a bit of fog in the area that did not seem to go anywhere and fog happens to be the same color as polar bears. The fog did however make it a bit easier to sleep since most of the sunlight was covered and when there’s 24 hours of daylight from mid-April until September, a little fog can still serve a purpose.

Rich Lake Site

Rich Lake Site

Greenland

Greenland

Professional Development Opportunities this Summer

This summer we are offering two professional development workshops: GenomeSolver and Bioinformatics: Unlocking Life through Computation. Both explore bioinformatics, microbial diversity and the implementation in the undergradauate or high school classrooms.

The GenomeSolver workshop trains faculty on genome analysis. Workshop attendees will learn about general methodologies, standards, and processes used to annotate and analyze microbial genomes. The workshop contents will be available to aid the faculty in developing teaching modules. In addition, extensive documentation on methodologies and tools will be available via the online environment created for this project. On online web portal Genome Solver (www.genomesolver.org) will be a virtual space for development and sustaining of community. Genome Solver will assist faculty with technical issues and curricular design, as well as an online environment for the ongoing sharing of information including publication of student work.

http://www.weizhongli-lab.org/cms/education/prodev/genome-solver-annotation-workshops

Bioinformatics: Unlocking Life through Computation is a new opportunity for high school teachers. Genomics and biotechnology are valuable tools in our quest to understand life and nature. However, introducing the science classroom to the computational and mathematical underpinnings of biology can be challenging. The goal of this workshop is to introduce a curriculum for mathematics and science education in the area of genomics (with a focus on the fascinating world of microbes). Educators will be introduced to the various analysis and computational challenges that arise in this discipline. Workflow examples illustrating comparative genomic analysis will be made available through the JCVI Metagenomics Report (METAREP) software infrastructure. The eventual aim is for the educational material to be integrated with local high school curricula requirements to expose students to both hypothesis-driven and discovery-based science.

http://www.weizhongli-lab.org/cms/education/prodev/bioinformatics-unlocking-life-through-computation/

Amazon Expedition

Yesterday, JCVI expedition scientist Jeff Hoffman embarked from Manaus on a sampling expedition of the Amazon River and its tributaries, which contains 1/5th of the Earth’s river flow. In collaboration with scientists Dr. Guilherme Oliviera and Dr. Sara Cuadros from the Centro de Excelencia em Bioinformatica (CEBIO) of Belo Horizonte, Jeff is taking samples to characterize the genomes of microbes found along 2/3rds of the entire Amazon watershed, including inflowing rivers from Manaus to Macapa. Our collaborators at CEBIO will be sequencing the samples with a joint Brazil-USA effort on analysis. Long recognized for the biodiversity of visible organisms, the Amazon is understudied with regards to the diversity of microscopic organisms and this expedition will substantially increase our understanding of the biological diversity on Earth. This work continues, leverages, and complements previous and ongoing JCVI work characterizing the unexplored microbiomes of marine, estuarine, freshwater, and terrestrial environments around the world.

See a gallery of the expedition on Facebook. More pictures will be added throughout the trip.

The 2014 Summer Internship Application is Open and Announcing the Genomics Scholar Program

The 2014 Summer Internship Application is now open. Last summer, we hosted 49 interns from a pool of 424 applicants. They presented their research in the First Annual Summer Internship Poster Sessions held in San Diego and Rockville. The posters were judged by a team of volunteer JCVI scientists and the poster sessions were open to all employees, interns and their guests to share what great work they all participated in this summer.

 

 

2013 Intern Poster Session

2013 Intern Poster Session

We are also excited to announce the new Genomics Scholar Program beginning this summer and also accepting applications. The Genomic Scholar Program (GSP) is a targeted research experience program to community college students in Rockville. Our program incorporates multiple avenues of support for students through the research experience with the Principal Investigators as mentors, and supplemental professional development provided by the JCVI. Additionally, selected students will have the opportunity to participate in undergraduate research conferences.

The GSP is supported by the National Institute of Diabetes and Digestive and Kidney Diseases of the National Institutes of Health under award number R25DK098111.

Sampling: US to the Azores

I’m off again on an ocean sampling voyage but this time instead of being onboard the JCVI’s Sorcerer II, I am onboard the R/V Endeavor as part of a multi-institution, international scientific sampling team that is headed from the US to the Azores.

On Thursday August 22 we left Morehead City, North Carolina for Ponta Delgada on Sao Miguel Island in the Azores. The research vessel will take multiple samples along the 23 day transect. Here is a rundown of the teams and the science we are conducting.

Crew leaving Morehead City, NC.

Crew leaving Morehead City, NC. From the left: Sarah Fawcett, Amandine Sabadel, Malcolm Woodward, and Bess Ward.

R/V Endeavor

R/V Endeavor

I will be filtering large volumes of seawater on 293mm filters for DNA sequencing, as well as smaller volumes onto smaller Sterivex filters for RNA sequencing and associated studies of gene expression within various microbial communities. This research expedition is funded by a grant from the National Science Foundation program in Dimensions of Biodiversity to Bess Ward at Princeton University and Andrew Allen at JCVI. The goal of our JCVI group is to extend findings from the Sorcerer II Global Ocean Sampling program, which documented massive genomic diversity and unusual physiological and biochemical capabilities within and between many lineages of marine microorganism. With samples collected on this research cruise, we will have the opportunity to document large-scale patterns in gene expression, and generate key hypotheses related to the most biochemically-active microbes across a major section of the upper 1000m of the North Atlantic. Data obtained from this study will be combined with similar data we collected last February and August on cruises out of Bermuda to the Bermuda Atlantic Time Series (BATS) stations in the in the sub-tropical Atlantic.

North Atlantic Transect, north of Sorcerer II transect to the Azores in 2009.

North Atlantic Transect, north of Sorcerer II transect to the Azores in 2009.

The Princeton team headed up by Bess Ward includes Sarah Fawcett, Nicolas Van Oostende, Jess Lueders-Dumont, Dario Marconi, and Keiran Swart. Their primary research involves using flow cytometry to physically capture, size fractionate and identify microbes living in the sunlit layer of the ocean. These microbes are directly responsible for assimilation of dissolved nitrate, which accumulates in the dark interior of the ocean. Specific identification of these microbes is an important research goal for microbial oceanography because the regulation and magnitude of global oceanic CO2 assimilation is driven explicitly by nitrate assimilation by photosynthetic microbes. Such microorganisms also produce a large fraction of the oxygen in the atmosphere. The Princeton group will perform nitrification experiments and measure levels of dissolved nitrate, ammonia and carbon by using stable and natural isotope tracers. The team will investigate the origins of dissolved inorganic nitrogen by measuring the natural abundance of the nitrogen isotopes. Net tows will also be performed to collect the “bigger” planktonic organisms, such as zooplankton, within the ocean food chain.

Real time nutrient data down to nanomolar levels will be determined by Malcolm Woodward of Plymouth Marine Laboratory (PML) and Amandine Sabadel from the University of Otago in New Zealand.

As we motor to our first station, which we should reach on Monday September 2nd, we stop every morning at 5 am to perform a CTD cast to 1000 meters. Based on biological and physical features, observable in real time via CTD sensors cabled to the shipboard computer,12 bottles, each containing 30 liters of sea water, are sealed at varied depths and the 360 liters is brought to the boats deck. Once the CTD is on the deck, the different scientists scurry to gather their allocated amount of water from the CTD rosette and hurry back to their labs to do the appropriate work.

CTD Controls

CTD Controls

CTD Controls

CTD Controls

CTD1

CTD1

As of Wednesday August 28, 2013, we have done 7 transect CTD casts, all but one to 1000 meters. Today we sampled on the Grand Banks and the water column depth was only 57 meters. For every cast I have collected RNA samples at 1000 meters, 250 meters, within the Deep Chlorophyll Max (DCM) (if no DCM is apparent, then just below the Chlorophyll max), a sample from within the Chlorophyll max and in the mixed layer (normally at 20 meters).

The weather has been great except for one 24 hour period when the swells grew to about 7 feet and the boat was really rolling back and forth. The crew is great, the food is awesome, good thing they have a small gym or I don’t think most of us would fit in our clothes after a few weeks out here! The scientists are working well as a team and this should be a very exciting and beneficial science expedition.

CTD Profile

CTD Profile

Dry Lab

Dry Lab

 

Once we get to the our first station we will stay there for two days………….it will be a very intense two days, then a day motor to the second station followed by another crazy two days of sampling………….more on that next blog!

Thule, Greenland - Day One

Arrived at Thule, Greenland after a 5 hr flight from Copenhagen. It was pretty interesting seeing a long line of people all getting on a flight that was headed to a part of the world that usually has less than 600 people there at any given time. Arrival was pretty straightforward, no jetway, no customs, no LCD screens telling you where to pick up your bag. Just a few military personnel checking your documents to ensure that you have the approval from the Danish government and USAF to be on base. First impression getting off the plane…it’s cold. Not as cold as I expected it to be but it was just 90 degrees F when I left home a few days ago. Today’s high was 39 degrees F. Standing in the sun it’s not so bad but when the wind starts blowing it turns into a recipe for chapped lips and windburn. Oh and did I mention the massive mosquitos here? Not much wildlife in this part of the world but the mosquitos outnumbers the vertebrates probably a million to one. They are also VERY aggressive; they even swarmed the trucks while we were driving around the base. We were shown our living quarters, which were very nice, kind of reminded me of living in the dorms during undergrad. There are individual rooms and a shared bathroom on each floor. We toured the various sites that our collaborator Slava Epstein already pointed out as good sampling sites that vary in vegetation and proximity to water. The land here is quite desolate, not much green, mostly moss and small shrubs growing. Traditional trees are nonexistent but “ground trees” are actually common. They are trees that grow outward on the grass and not upward. The rest resembles pictures taken by the mars rover. As the day goes by I noticed the sun was circling and I came to the realization that the typical artic summer was happening right in front of me. The sun literally circles and will not go down until around September. It was quite odd, getting in bed at midnight and seeing the sun still in the sky. Tomorrow will be more interesting since we will be going further away from base to sample additional areas.

blog2

blog1

Thule, Greenland - Day Three

Day three started with me missing breakfast. It seems that folks around here only eat breakfast between 5am and 8am. Today was a very rough day for sampling. About an hour drive to the area near the site, about a three-mile hike to one spot another half-mile hike to another spot followed by the three and a half mile hike back to the truck. We sampled “rich” soil and “rich” soil from a lake. These two sites were sampled and categorized as “rich” due to the abundance of vegetation around and near the sites. The area surrounding Thule is very desolate so I can imagine the plants have a hard enough time growing. It would be very interesting to see what microbes are present in these two sites to allow such vegetation to grow; even more interesting to see how water affects the microbial population. Samples were frozen once we got back to the on site lab. A small portion was saturated with AllProtect to ensure preservation of RNA for transcriptomics analysis.

DSCF0619

DSCF0622

 

The day ended with a lecture from another NSF grant recipient to install a telescope on the Greenlandic ice cap. It was an interesting idea to coordinate radio imaging from other telescopes around the world to look at quantum singularities that were very far away. After speaking to some of the other scientists here I found out that our group, which includes myself and our collaborators Slava Epstein and Dawoon Jung, were the ONLY Microbiologists on the base. Everyone else was either a Geologist, Environmental Scientist, Astronomer, or Meteorologist. It was great to hear about everyone else’s projects.