

May 9, 2007

Brad Werdick University of California, San Diego 9500 Gilman Drive La Jolla, California 92093

Re: Venter Institute Site Access Study

Dear Mr. Werdick:

The report summarizes the transportation impacts associated with the development of the Venter Institute, a scientific research and development center, on Parcel 4 of the Scripps Upper Mesa neighborhood. This site is located at the University of California, San Diego within the Scripps Institution of Oceanography. The currently vacant Parcel 4 is located at the southwest corner of the Torrey Pines Road/La Jolla Village Drive intersection. The potential off-site impacts of the project were analyzed at key intersections in the project vicinity under existing with project conditions. In addition, safety, sight distance, and project access were evaluated.

The analysis and recommendations presented in this report reflect opinions of City of San Diego Development Services Department transportation staff. In a meeting on September 25, 2006, City staff indicated they were not supportive of either a left-turn ingress or left-turn egress from Torrey Pines Road into and out of the project site. Preliminary analysis results were presented to the City and they found no reason to depart from City standards by allowing left-turn ingress. In addition, the City commented on the amount of on-street parking to be removed to provide adequate sight distance for egress vehicles. Their comments are reflected in this report; however, we have presented the results of our analysis with and without the left-turn ingress as a reference for how adjacent intersections would be affected with the movement allowed.

## **RECOMMENDATIONS**

The key findings and recommendations of our analysis are summarized below.

## **Existing Conditions**

- The Torrey Pines Road/La Jolla Village Drive intersection currently operates at level of service (LOS) B conditions during the AM peak hour and LOS C conditions during the PM peak hour.
- The Torrey Pines Road/Glenbrook Way intersection currently operates at LOS A conditions during the AM peak hour and LOS B conditions during the PM peak hour.
- The existing westbound left-turn queue at the Torrey Pines Road/La Jolla Village Drive intersection extends beyond the storage pocket during the PM peak hour.

## **Existing With Project Conditions**

- The proposed project is estimated to generate approximately 60 AM peak hour, 50 PM peak hour, and 360 daily trips.
- With the proposed project, the Torrey Pines Road/La Jolla Village Drive intersection would continue to operate at LOS B during the AM peak hour and LOS C during the PM peak hour.



- The Torrey Pines Road/Glenbrook Way intersection would continue to operate at LOS A and LOS B conditions during the AM and PM peak hour, respectively, with the proposed project.
- Maximum vehicle queues would not measurably increase.

## **Evaluation of Project Access**

- Access to the project should be provided by a right-in and right-out driveway on Torrey Pines Road.
- The left-turn ingress from Torrey Pines Road would not adversely affect adjacent intersection operations. However, City of San Diego staff indicated they were not supportive of left-turn ingress from Torrey Pines Road because it is designated as a major arterial with limited access.
- The project driveway should be located on the north end of Parcel 4, approximately 300 feet south of the Torrey Pines Road/La Jolla Village Drive intersection (measured from the curb-return of the intersection).
- The internal intersection between Parcel 3 and 4 should be configured as a traditional "T" intersection. The side approaches should be controlled by stop signs while vehicles entering the site from Torrey Pines Road should not stop.
- The project driveway should be 24-30 feet in width.
- A raised median should be constructed on Torrey Pines Road from La Jolla Village Drive to the southern edge of Parcel 4 to prevent left turn in/out movements.
- Red curb on Torrey Pines Road should be extended (approximately 210 feet) from its current terminus south of La Jolla Village Drive to the proposed project driveway to ensure clear corner sight distance.



#### INTRODUCTION

The scope of this study was developed by UCSD with consultation from City of San Diego Development Services Department transportation staff.

## Study Area

The vacant Scripps Upper Mesa area is bordered by Torrey Pines Road to the east, Expedition Way to the west, and La Jolla Village Drive to the north. The area is comprised of four parcels (Parcels 1-4) on approximately seven acres which the University plans to develop as projects are identified in the future. The first proposed development is the Venter Institute on Parcel 4, which is bordered by Torrey Pines Road and Allen Field.

Access to the project site will be via a driveway on Torrey Pines Road. Project impacts were analyzed at the following two study intersections during the AM and PM peak hour:

- Torrey Pines Road/La Jolla Village Drive
- Torrey Pines Road/Glenbrook Way

## Analysis Methodology

Level of service (LOS) is a quantitative measure describing the operating condition of intersections and roadways. LOS ranges from A through F, where A represents the best driving conditions and F the worst. In general, LOS A represents free-flow conditions with no congestion, and LOS F represents severe congestion and delay under stop-and-go conditions.

The study intersections were analyzed using methodology contained in *Highway Capacity Manual 2000* (Transportation Research Board, 2000), consistent with City of San Diego standards. This methodology determines intersection level of service by comparing the average control delay per vehicle to the thresholds shown in Table 1.

|                     | Table 1 Signalized Intersection Level of Service Criteri                                                                             | A                                                            |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| Level of<br>Service | Description                                                                                                                          | Signalized Intersection (Average Vehicle Delay) <sup>1</sup> |
| А                   | Represents free flow. Individual users are virtually unaffected by others in the traffic stream.                                     | ≤ 10.0                                                       |
| В                   | Stable flow, but the presence of other users in the traffic stream begins to be noticeable.                                          | 10.1 - 20.0                                                  |
| С                   | Stable flow, but the operation of individual users becomes significantly affected by interactions with others in the traffic stream. | 20.1 - 35.0                                                  |
| D                   | Represents high-density, but stable flow.                                                                                            | 35.1 - 55.0                                                  |
| E                   | Represents operating conditions at or near the capacity level.                                                                       | 55.1 - 80.0                                                  |
| F                   | Represents forced or breakdown flow.                                                                                                 | > 80.0                                                       |
| Source: 1 Hi        | ghway Capacity Manual - Special Report 209 (Transportation Research Board, 20                                                        | 00).                                                         |

Mr. Brad Werdick May 9, 2007 Page 4 of 12



Highway Capacity Manual methodologies include pedestrian factors which affect intersection operations. This is especially important in university settings as pedestrian activity is not typical of most areas. The elevated level of pedestrian activity has been accounted for in the level of service analysis by assuming a significant amount of pedestrians cross each intersection approach (where crosswalks are provided). To do this, we accounted for the pedestrians' effect on the right-turning flow rates (left-turns where applicable) and we assumed that a pedestrian pushes a call button at a traffic signal for the majority of the cycles during the peak hour.

#### Level of Service Standards

The City of San Diego has LOS policies relating to operations of signalized intersections. These policies were considered in the development of the following criteria for this study. The project would have a significant impact if it would:

- Worsen an intersection from LOS D or better to LOS E or worse; or
- Worsen an intersection already operating at LOS E, or F by more than two seconds of delay.

## **EXISTING CONDITIONS**

This section describes the existing roadway network in the vicinity of the project site including operations at the study intersections. Existing bicycle, pedestrian, and transit facilities in the project vicinity are also discussed.

## Roadway System

Figure 1 (located in Attachment A) displays the proposed project's location and the study intersections. The roadways that would provide access to the project are described below:

**Torrey Pines Road** borders the project to the east and would provide the primary project access. Torrey Pines Road is classified in the City's La Jolla Community Plan as a four lane major arterial and is the main access between the downtown La Jolla area and the UCSD campus. Adjacent to the project, this roadway has two travel lanes in each direction and a striped median. The roadway has a posted speed limit of 45 miles per hour (MPH). Sidewalks and on-street bike lanes exist along both sides of Torrey Pines Road adjacent to the project site. Pedestrian and bicycle access to/from UCSD is provided at the Torrey Pines Road/La Jolla Village Drive intersection.

**North Torrey Pines Road** is the primary route to/from the north of the project. It forms part of the campus' west border as it extends north-south from Genesee Avenue to La Jolla Village Drive. North Torrey Pines Road is classified as a four lane (two in each direction) major arterial. It has a posted speed limit of 45 MPH. Sidewalks exist along both sides of North Torrey Pines Road adjacent to the project site.

La Jolla Village Drive extends easterly from North Torrey Pines Road at Torrey Pines Road and provides access to/from the east, including the most direct access to Interstate 5. The roadway is classified as a major arterial with a varying number of travel lanes as it crosses Gilman Drive, Villa La Jolla Drive, and Interstate 5.

## Traffic Volumes

Fehr & Peers conducted AM (7-9) and PM (4-6) peak period traffic counts at the study intersections while classes at UCSD were in session. The counts were conducted in 2006 and 2007, as part of data collection for nearby University-related projects. Traffic counts were

Mr. Brad Werdick May 9, 2007 Page 5 of 12



compared to counts used in the University's 2004 Long Range Development Plan. The recently collected counts during the PM peak hour match closely with those previously published.

Figure 1 displays the AM and PM peak hour traffic volumes, lane configurations, and traffic control devices at the study intersections.<sup>1</sup>

#### Levels of Service and Queues

The traffic volumes displayed on Figure 1 were used to analyze existing traffic operations at the study intersections. The study intersections currently operate acceptably, according to City standards, at LOS B conditions during the AM peak hour and LOS C conditions during the PM peak hour. Technical calculations are included in Attachment B.

The calculated 95<sup>th</sup> percentile westbound left-turn queue at North Torrey Pines Road/La Jolla Village Drive is 580 feet. This exceeds the storage provided by the left-turn pocket and extends beyond the adjacent intersection, with La Jolla Scenic Drive, which is approximately 330 feet to the east. During the peak hours, left-turn queues can fill the storage area between the two intersections. In the field, the left-turn queue can only be 330 feet before it becomes a queuing issue of the adjacent intersection. For the remainder of this report we have presented the calculated queues (580 feet) regardless of the distance to the adjacent intersection. The calculated queue was reported because it allowed for direct comparison between the calculated queues of the with project scenarios. This allowed us to determine if the proposed project would worsen an existing queuing problem.

## **EXISTING WITH PROJECT CONDITIONS**

This section describes the potential near-term traffic impacts of the proposed project on the surrounding roadway system.

## Project Description

According to the Scripps Upper Mesa Neighborhood Planning Study and University staff, the long term or planned development for Parcels 1-4 will be comprised of 135,200 square feet of scientific research and development uses. The Venter project on Parcel 4 is the first project to be proposed in this portion of campus and would consist of 45,000 gross square feet of scientific research and development facilities. The development schedule for Parcels 1-3 is unknown.

Figure 2 in Attachment A shows the Parcel 4 site plan. Access to Parcel 4 would be provided by an unsignalized driveway on Torrey Pines Road. Evaluations of this driveway are described in greater detail in the Evaluation of Project Access section of this report.

The only proposed access to Parcel 4 is the driveway on Torrey Pines Road; however, with the development of Parcels 1-3 a full access driveway would be constructed at some point in the future on Expedition Way. This connection is not assumed with development of Parcel 4 only.

Attachment D contains the raw traffic count sheets. The volumes shown in the figures have been manually balanced between adjacent intersections as part of nearby University-related projects.



## Trip Generation

We estimated the trip generation of the proposed project for AM and PM peak hour conditions using trip rates and percentages published in *Trip Generation Manual*, City of San Diego Municipal Code, May 2003 and site information obtained from University staff. The City's trip generation rates closely match estimates for the research and development center land use category from *Trip Generation 7<sup>th</sup> Edition*, Institute of Transportation Engineers, 2003, which is a well documented resource and typically used in traffic engineering throughout the country. The rates used in this analysis are consistent with the University's Long Range Development Plan. Table 2 summarizes the estimated trip generation for Parcels 1-4 of the proposed project.

|        |                          |                 | TRIP GEI      | NERATION       | Таві<br>Еѕтіматі      |       | PPS <b>U</b> PPE | R <b>M</b> ESA |       |    |              |       |
|--------|--------------------------|-----------------|---------------|----------------|-----------------------|-------|------------------|----------------|-------|----|--------------|-------|
|        |                          |                 | 1             | Trip Rates     | <b>5</b> <sup>1</sup> |       |                  |                | Trips |    |              |       |
| Parcel | Land Use                 | Amount<br>(KSF) | Daily         | АМ             | PM                    | Deily | AM Peak Hour     |                | our   | PI | PM Peak Hour |       |
|        |                          |                 | (ADT/<br>KSF) | (% of<br>ADT)  | (% of<br>ADT)         | Daily | In               | Out            | Total | In | Out          | Total |
| 1      | Research and Development | 32.5            | 8.0           | 16%<br>(90/10) | 14%<br>(10/90)        | 260   | 38               | 4              | 42    | 4  | 32           | 36    |
| 2      | Research and Development | 32.1            | 8.0           | 16%<br>(90/10) | 14%<br>(10/90)        | 257   | 37               | 4              | 41    | 4  | 32           | 36    |
| 3      | Research and Development | 25.6            | 8.0           | 16%<br>(90/10) | 14%<br>(10/90)        | 205   | 30               | 3              | 33    | 3  | 26           | 29    |
| 4      | Research and Development | 45.0            | 8.0           | 16%<br>(90/10) | 14%<br>(10/90)        | 360   | 52               | 6              | 58    | 5  | 45           | 50    |
|        | Total Land Use           | 135.2           |               | Total Ne       | ew Trips              | 1,082 | 157              | 17             | 174   | 16 | 135          | 151   |

Notes: <sup>1</sup> Rounded trip rates shown based on actual rates and percentages from *Trip Generation Manual*, City of San Diego Municipal Code, May 2003.

KSF - thousand square feet

As shown, the Venter project (Parcel 4) is expected to generate 360 daily trips, including approximately 60 AM peak hour trips and 50 PM peak hour trips. These trips were assigned to the project driveway and adjacent study intersections.

#### Trip Distribution

We determined the expected distribution of project trips onto the adjacent roadway network based on existing traffic volumes, the location of complementary land uses, and previous development studies from the University. The following is the expected trip distribution:

| <u>Directionality</u>                             | <u>Percent</u> |
|---------------------------------------------------|----------------|
| To/from the east on La Jolla Village Drive        | 50%            |
| To/from the west/north on North Torrey Pines Road | 20%            |
| To/from the west/south on Torrey Pines Road       | 30%            |
| Total                                             | 100%           |

Mr. Brad Werdick May 9, 2007 Page 7 of 12



## Trip Assignment

We assigned project trips to the study intersections in accordance with the trip distribution percentages and permitted driveway turning movements. All of the trips departing the site and traveling on North Torrey Pines Road or La Jolla Village Drive were assumed to exit onto Torrey Pines Road and make a u-turn at Glenbrook Way. U-turns are permitted at this intersection as this movement is identical to that of vehicles exiting Allen Field on Torrey Pines Road. Figure 3 summarizes the project-only trips assuming only right-turn ingress and egress on Torrey Pines Road.

Parcel 4 project trips were added to the existing volumes to yield the Existing With Project volumes shown on Figures 4 and 5 (including volumes at the project driveway). Trips estimated with buildout of Parcels 1-4 were added to the existing volumes and are shown in Figures 6 and 7. All figures are included in Attachment A.

#### Level of Service and Queues

We analyzed traffic operations at the study intersections and project driveway access under the following Existing With Project scenarios:

- Parcel 4 buildout with left-in access from Torrey Pines Road
- Parcel 4 buildout with right-in/right-out access only from Torrey Pines Road
- Parcels 1-4 buildout with left-in access from Torrey Pines Road
- Parcels 1-4 buildout with right-in/right-out access only from Torrey Pines Road

A full access driveway onto Expedition Way would be constructed at some point in the future corresponding with the buildout of Parcels 1-3. This connection was assumed in our "Parcels 1-4" buildout analysis scenarios.

In a September 2006 meeting, City of San Diego staff indicated they were not supportive of the left-turn ingress from Torrey Pines Road due to the classification of the roadway as a four lane major arterial, which should have limited access to maintain/achieve the planned capacity (described below). The analysis of this movement has been included in the report to show what the effects on adjacent intersections would be if the left-turn ingress were allowed.

The LOS and queuing results are summarized separately for the two study intersections. Table 3 summarizes the results for the Torrey Pines Road/La Jolla Village Drive intersection under all of the previously discussed scenarios. Refer to Attachment B for technical calculations.

Table 3 indicates that the project would not worsen the LOS from existing conditions. The northbound left-turn queue at the Torrey Pines Road/La Jolla Village Drive intersection would not increase enough to cause spillback out of the turn pocket. The westbound left-turn queue would not be expected to increase with the addition of project-related traffic with any of the four scenarios analyzed.



# TABLE 3 TORREY PINES RD/LA JOLLA VILLAGE DR – PEAK HOUR INTERSECTION LEVELS OF SERVICE AND QUEUES

|                          | Scenario                               | AM Pea             | ak Hour | PM Pea | ak Hour | Queues <sup>2</sup>                        |
|--------------------------|----------------------------------------|--------------------|---------|--------|---------|--------------------------------------------|
|                          |                                        | Delay <sup>1</sup> | LOS     | LOS    |         |                                            |
| Existing                 | -                                      | 15.6               | В       | 34.6   | С       | <b>WBL - 580</b> <sup>3</sup><br>NBL - 110 |
| Existing With            | Left-in on Torrey Pines Rd.            | 15.7               | В       | 34.9   | С       | <b>WBL - 580</b> <sup>3</sup><br>NBL - 110 |
| Parcel 4                 | Right-in/Right out on Torrey Pines Rd. | 15.9               | В       | 35.0   | С       | <b>WBL - 580</b> <sup>3</sup><br>NBL - 120 |
| Existing With            | Left-in on Torrey Pines Rd.            | 15.9               | В       | 34.7   | С       | <b>WBL - 580</b> <sup>3</sup><br>NBL - 110 |
| Parcels 1-4 <sup>4</sup> | Right-in/Right out on Torrey Pines Rd. | 15.8               | В       | 34.7   | С       | <b>WBL - 580<sup>3</sup></b><br>NBL - 130  |

Notes:

- <sup>1</sup> Average control delay reported in seconds per vehicle.
- <sup>2</sup> Reported 95<sup>th</sup> percentile queue (in feet) is longest from AM and PM peak hours.
- <sup>3</sup> Calculated queue exceeds the storage provided by the left-turn pocket and extends beyond the adjacent intersection, with La Jolla Scenic Drive, which is approximately 330 feet to the west. The calculated queue is reported because it allows for direct comparison between the calculated queues of the buildout scenarios.
- <sup>4</sup> Access to Expedition Way will be built as part of Parcels 1-3 buildout and is assumed in the "Existing With Parcels 1-4" analysis.

Bold indicates queue exceeds storage length.

LOS - level of service

The project would add u-turn traffic to the Torrey Pines Road/La Jolla Village Drive intersection without left-turn ingress from Torrey Pines Road. This intersection currently accommodates a northbound left-turn movement and has sufficient capacity to handle the additional vehicles estimated to access the site.

Table 4 summarizes the LOS and queuing results at the Torrey Pines Road/Glenbrook Way intersection. Queuing analysis was performed for the southbound left-turn movement only, as this is the turning movement that would be affected by project-related traffic. Refer to Attachment B for technical calculations.



As shown below, this study intersection would operate at LOS A conditions during the AM peak hour and LOS B conditions during the PM peak hour with the proposed project and with Parcels 1-4 in place.

# TABLE 4 TORREY PINES RD/GLENBROOK WAY – PEAK HOUR INTERSECTION LEVELS OF SERVICE AND QUEUES

|                          | Scenario                               | AM Pea             | ık Hour | PM Pea | ak Hour | Queues <sup>2</sup> |
|--------------------------|----------------------------------------|--------------------|---------|--------|---------|---------------------|
|                          | ••••                                   | Delay <sup>1</sup> | LOS     | Delay  | LOS     | 4.0000              |
| Existing                 | -                                      | 9.6                | Α       | 13.7   | В       | SBL - 50            |
| Existing With            | Left-in on Torrey Pines Rd.            | 9.7                | Α       | 13.9   | В       | SBL - 70            |
| Parcel 4                 | Right-in/Right out on Torrey Pines Rd. | 9.7                | Α       | 13.8   | В       | SBL - 70            |
| Existing With            | Left-in on Torrey Pines Rd.            | 9.6                | Α       | 13.0   | В       | SBL - 50            |
| Parcels 1-4 <sup>3</sup> | Right-in/Right out on Torrey Pines Rd. | 9.6                | Α       | 12.9   | В       | SBL - 50            |

Notes:

LOS - level of service

The project is not proposing a left-turn egress onto Torrey Pines Road; therefore, northbound project-related traffic exiting the site would add to the u-turn movement at the Torrey Pines Road/Glenbrook Way intersection. Queues for the southbound left-turn (and u-turn) movement would modestly increase with the Buildout of Parcel 4, due to the addition of u-turn traffic, but are not expected to extend beyond the existing 150 foot storage pocket. A connection to Expedition Way would be built with the development of Parcels 1-3 and would provide a secondary ingress/egress point for motorists traveling to the north or east.

## **EVALUATION OF PROJECT ACCESS**

This section includes an evaluation of the consistency of the project driveway with applicable City standards, sight distance, driveway throat depth, and bicycle and pedestrian facilities. Recommendations in this section reflect comments received from City staff in September 2006.

Based on our review of the current site plan (dated January 2007 and shown in Figure 2), all of the recommendations presented in this section have been incorporated, with the exception of the desired throat depth. The proposed project site plan, the Venter Institute on Parcel 4, meets the desired throat depth by restricting internal drive aisle intersections to at least 100 feet from the Torrey Pines driveway. However, the portion of the Parcel 3 site plan shows an internal intersection within the recommended 100 foot clear distance. We recommend reconfiguring the internal intersection between Parcel 3 and 4 from an offset alignment to a traditional "T" intersection. The side approaches should be controlled by stop signs. Vehicles entering the site from Torrey Pines Road should not stop.

Average control delay reported in seconds per vehicle.

<sup>&</sup>lt;sup>2</sup> Reported 95<sup>th</sup> percentile queue (in feet) is longest from AM and PM peak hours.

<sup>&</sup>lt;sup>3</sup> Access to Expedition Way will be built as part of Parcels 1-3 buildout and is assumed in the "Existing With Parcels 1-4" analysis.

Mr. Brad Werdick May 9, 2007 Page 10 of 12



## **Driveway Access**

According to the City of San Diego's design standards, a left-turn ingress movement at the driveway on Torrey Pines Road would not be allowed because of the roadway classification. The multiple factors required by the City to allow a median break on the major arterial are not met. Without a left-in movement from Torrey Pines Road, vehicles entering the site from northbound Torrey Pines Road would make a u-turn at the Torrey Pines Road/La Jolla Village Drive intersection. The queues and level of service at the intersection would not be adversely affected by the additional u-turns.

## **Driveway Placement and Sizing**

In addition to the design standards, the City of San Diego Municipal Code provides general regulations on driveway placement and sizing. The following relevant regulations are from the chapter on Development and Design Regulations for Parking Facilities, §142.0560 (j):

- For properties with no access to an alley, there shall be at least one driveway opening permitted per street frontage with a maximum of one driveway opening for each 100 feet of street frontage.
- Nonresidential driveways shall have a minimum width of 24 feet and a maximum width of 30 feet.
- Driveways that traverse a sidewalk should be at least 20 feet long.

The first regulation allows Parcel 4 to have at least one driveway on Torrey Pines Road. The recommended design of this driveway is discussed later in this section.

## Stopping Sight Distance Requirements

Stopping sight distance requires use of the roadway's design speed. The sight distance standards assume a constant "design speed," which would be 45 MPH in this case, the posted speed limit on Torrey Pines Road; however, because Torrey Pines Road/La Jolla Village Drive is a "T" intersection vehicle speeds are lower than the posted speed limit during a portion of the segment. For example, vehicles traveling southbound on Torrey Pines Road have either made a left- or right-turn at the La Jolla Village Drive intersection. Vehicles turning at the intersection are not traveling at 45 MPH as they must slow to make the turn. It can be assumed that the turning speed at the intersection is 25 MPH and that the travel speed at the southern edge of Parcel 4 is 45 MPH (located approximately 450 feet south of the intersection). Therefore, the average speed in this section of roadway can be assumed as 35 MPH. This is the speed that was used to calculate the sight distance.

The City's *Street Design Manual* (2002) states that minimum corner sight distance be provided for driveways to ensure that exiting drivers have a clear view of oncoming traffic. Corner sight distance is applied using methodology published in *Geometric Design of Highways and Streets* (American Association of State Highway and Transportation Officials, 2004). For a design speed of 35 MPH the corner sight distance is 335 feet from the exiting lane of the driveway. Red curb on Torrey Pines Road should be extended (approximately 210 feet) from its current terminus south of La Jolla Village Drive to the proposed project driveway to ensure clear corner sight distance.

## Minimum Desired Throat Depth and Turn Pocket Storage

It is important that driveways be designed to provide adequate throat depth so that outbound traffic has sufficient storage to prevent blocking of the first on-site circulation aisle and parking. We estimated throat depth for weekday AM and PM peak hour conditions at the project driveway



based on the projected driveway volumes and volumes on the adjacent street. Estimated throat depths for the project access were based on the methodology presented in *Estimation of Maximum Queue Lengths at Unsignalized Intersections* (ITE Journal, November 2001).

Table 5 shows the results of the throat depth analysis. Refer to Attachment C for detailed throat depth queue calculations.

|              | TABLE 5 MINIMUM DESIRED THROAT DEPTH                                                                      |                                                  |
|--------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| Buildout     | Scenario                                                                                                  | Minimum Recommended<br>Throat Depth <sup>1</sup> |
| Parcel 4     | Left-in on Torrey Pines Rd.                                                                               | 100 ft.                                          |
| i aicei 4    | Right-in/Right out on Torrey Pines Rd.                                                                    | 100 ft.                                          |
| Parcels 1-4  | Left-in on Torrey Pines Rd.                                                                               | 100 ft.                                          |
| i aiceis i-4 | Right-in/Right out on Torrey Pines Rd.                                                                    | 100 ft.                                          |
|              | pased on the methodology presented in <i>Estimation of ad Intersections</i> (ITE Journal, November 2001). | Maximum Queue Lengths at                         |

We recommend the project driveway provide 100 feet of throat depth. This recommendation will accommodate estimated trips associated with buildout of Parcels 1-4.

## Bicycle/Pedestrian Facilities

Bicycle and pedestrian facilities along the project frontage should be preserved with the project, namely sidewalks and on-street bike lanes. The project driveway on Torrey Pines Road should be designed to support the safe and efficient travel of bicyclists and pedestrians.

## **Transit Facilities**

Transit facilities in the vicinity of the project would be preserved with the development. No bus routes would be displaced with the proposed project and the existing transit stop on Torrey Pines Road south of La Jolla Village Drive would not be affected with the buildout of Parcel 4.

## Median Type on Torrey Pines Road

A raised median should be constructed to replace the striped median that exists on Torrey Pines Road. The median should extend from the Torrey Pines Road/La Jolla Village Drive intersection to the southern edge of Parcel 4. A raised median would prevent illegal left- and u-turns on this section of the roadway.

Figure 8 (see Attachment A) shows the location of the recommended median, project driveway, and sight distance recommendations.



The photo below was taken on Torrey Pines Road near the intersection with La Jolla Village Drive. It shows a downed roadway sign in the middle of Torrey Pines Road. A raised median would prevent similar problems from occurring.

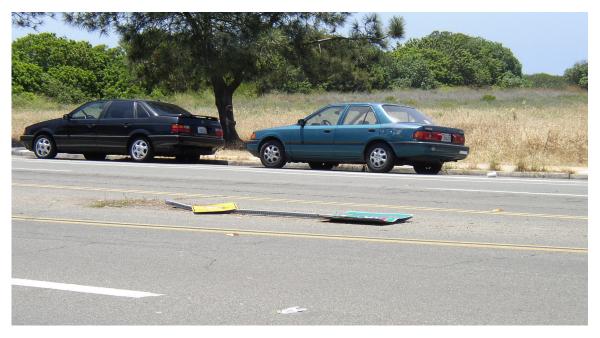
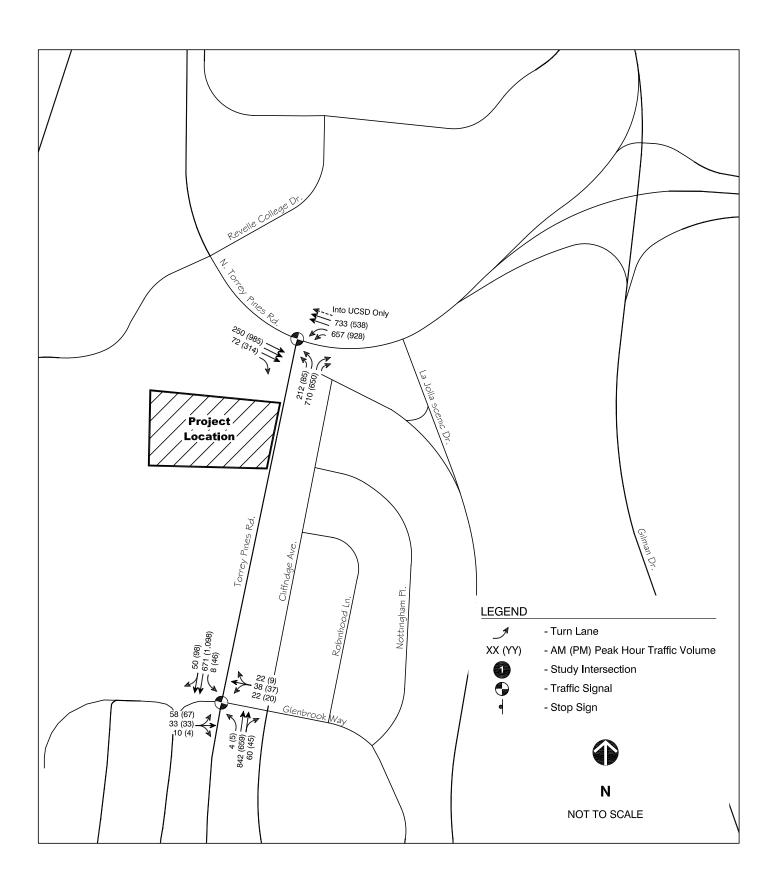



Image 1. Roadway Sign in the Center of Torrey Pines Road

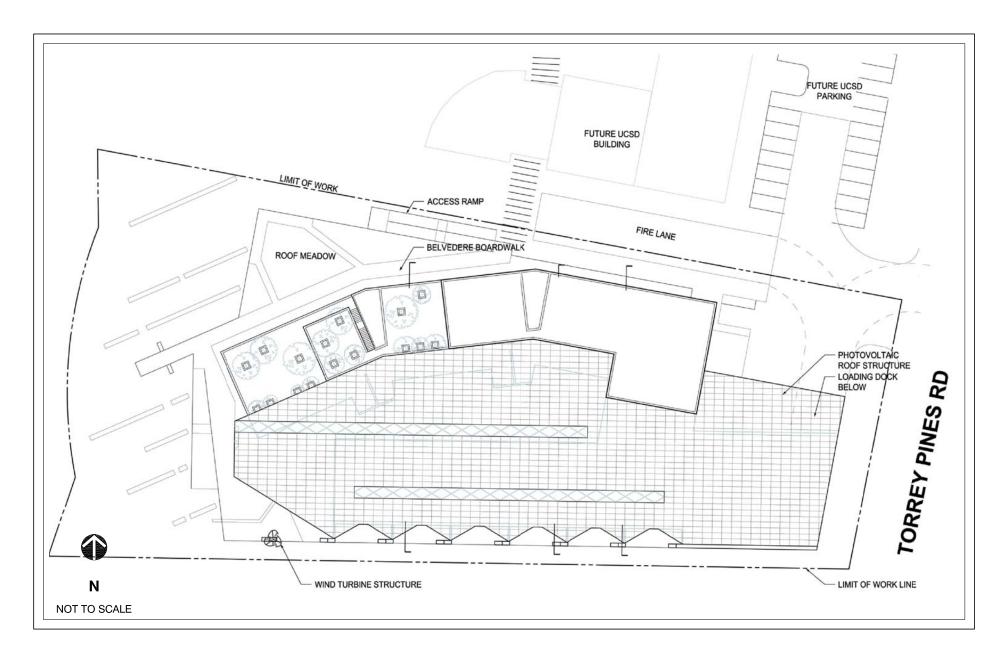
We hope that this information was helpful. If you have any questions or comments, please contact us in the Irvine office of Fehr & Peers at 949.859.3200 or by e-mail at j.gulden@fehrandpeers.com.

Sincerely,

FEHR & PEERS

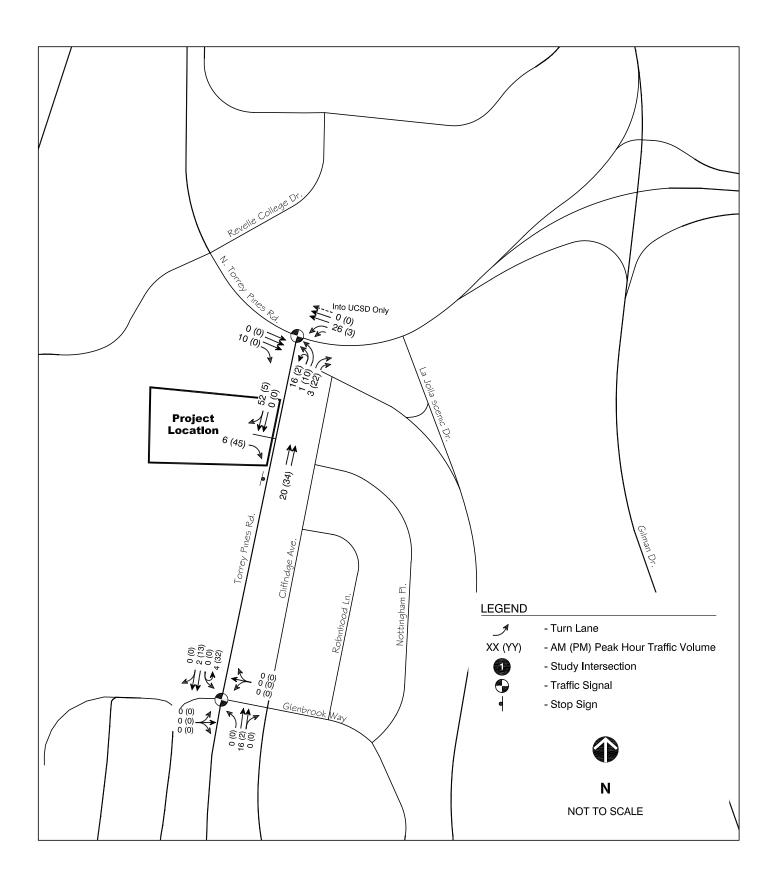

Transportation Engineer

Steve Brown, PE Principal

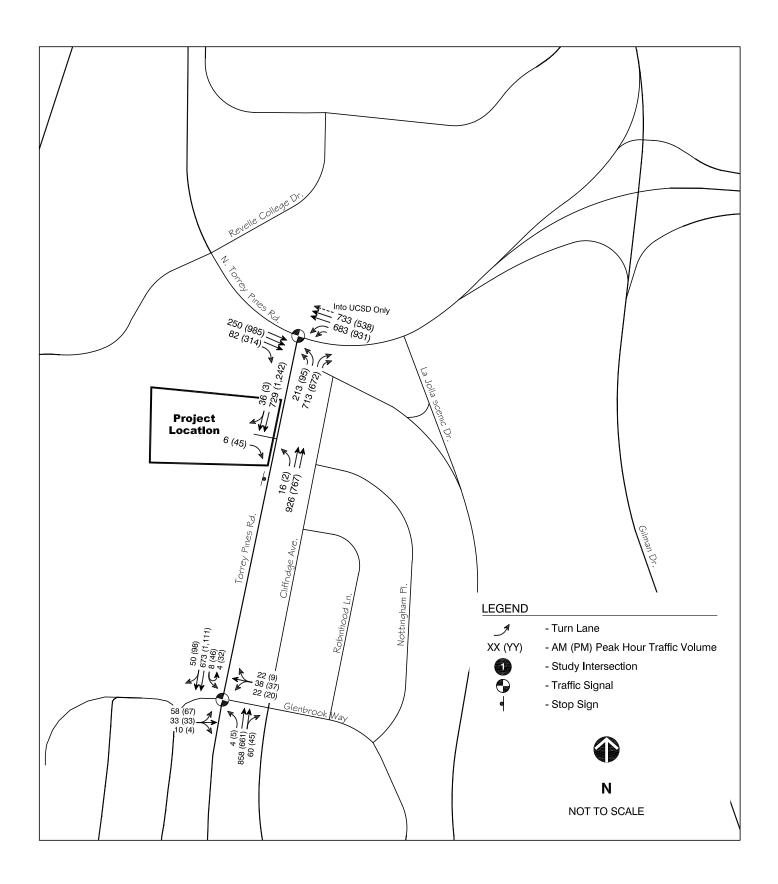

| Attachment A |  |
|--------------|--|
| Figures      |  |
| 9            |  |



Venter Institute Site Access Study University of California, San Diego

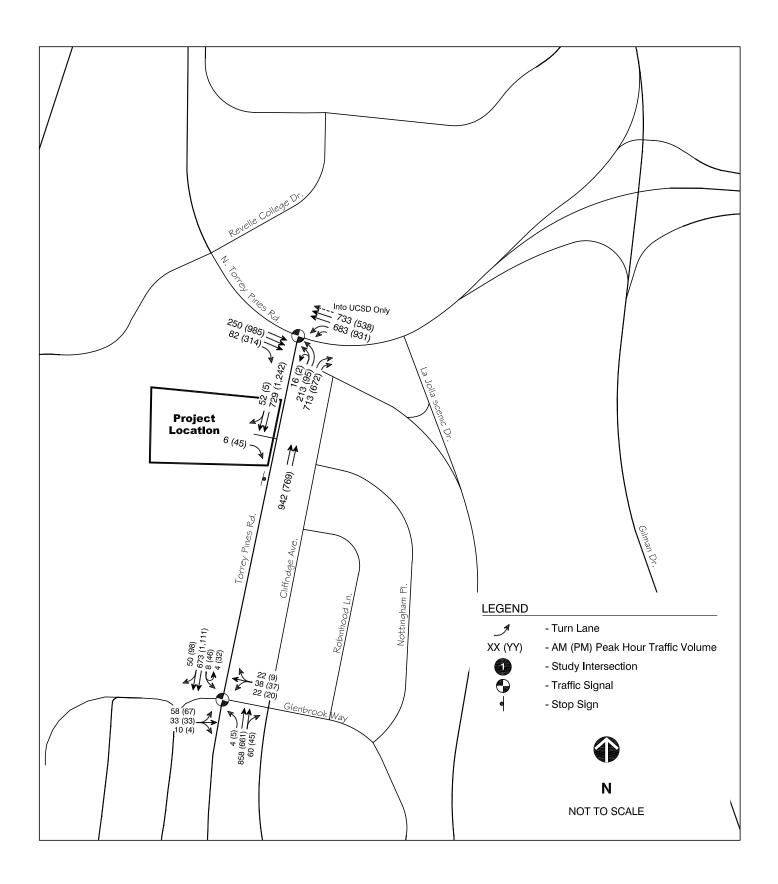




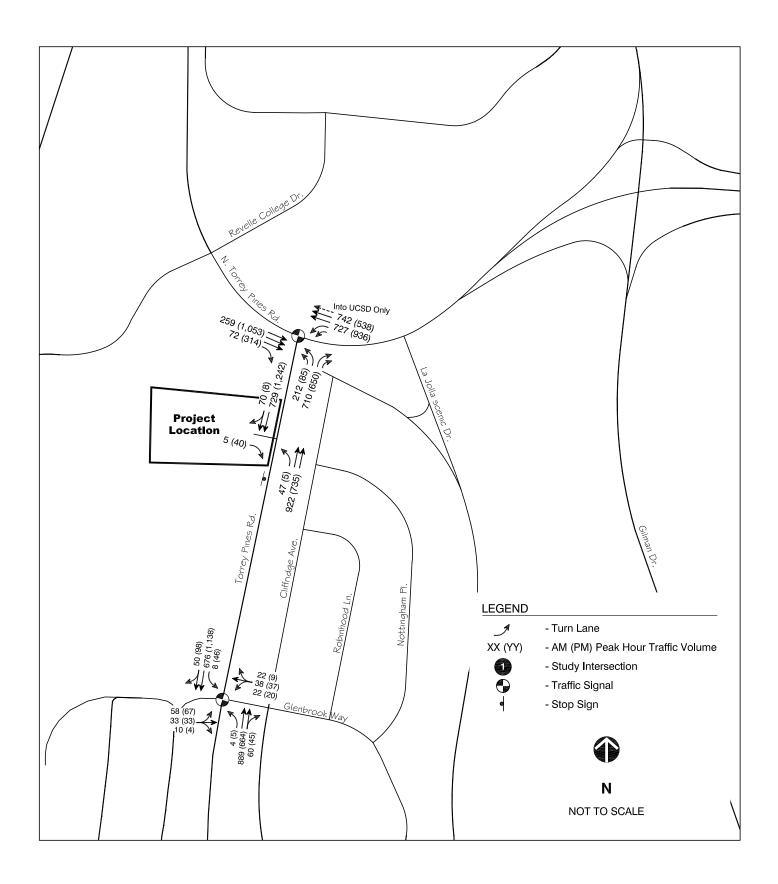



**PROJECT SITE PLAN** 



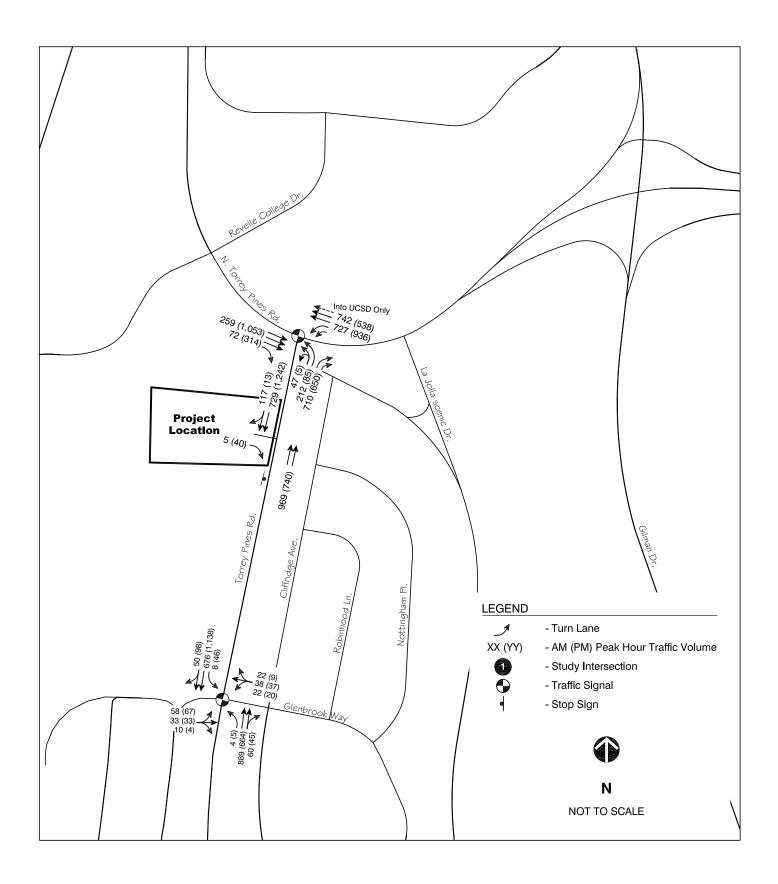




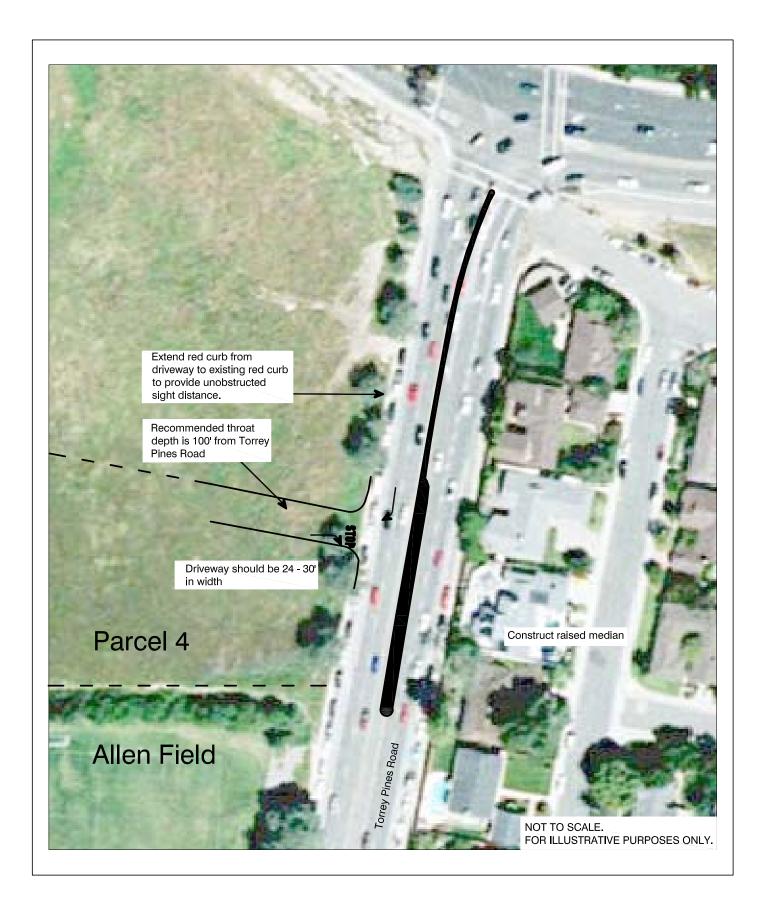

PEAK HOUR TRAFFIC VOLUMES AND LANE CONFIGURATIONS -EXISTING PLUS PARCEL 4 BUILDOUT LEFT-IN ON TORREY PINES ROAD






PEAK HOUR TRAFFIC VOLUMES AND LANE CONFIGURATIONS -EXISTING PLUS PARCEL 4 BUILDOUT NO LEFT-TURN ACCESS






PEAK HOUR TRAFFIC VOLUMES AND LANE CONFIGURATIONS -EXISTING PLUS PARCEL 1-4 BUILDOUT LEFT-IN ON TORREY PINES ROAD





PEAK HOUR TRAFFIC VOLUMES AND LANE CONFIGURATIONS -EXISTING PLUS PARCEL 1-4 BUILDOUT NO LEFT-TURN ACCESS



| Venter Institute Site Access Study University of California, San Diego |
|------------------------------------------------------------------------|
| <br>Attachment B                                                       |
| Level of Service Technical Calculations                                |



Venter Inst. Site Access Study 101: N Torrey Pines Rd & Torrey Pines Road

Existing Conditions AM PEAK HOUR

|                        | _         | •        | •     |         | ١,      | /          |
|------------------------|-----------|----------|-------|---------|---------|------------|
| Lane Group             | EBT       | EBR      | WBL   | WBT     | NBL     | NBR        |
| Lane Configurations    | ተተተ       | 7        | ሻሻ    | ተተተ     | ሻሻ      | 77         |
| Volume (vph)           | 250       | 72       | 657   | 733     | 212     | 710        |
| Turn Type              |           | Perm     | Prot  |         |         | pt+ov      |
| Protected Phases       | 2         |          | 1     | 6       | 4       | 4 1        |
| Permitted Phases       |           | 2        |       |         |         |            |
| Detector Phases        | 2         | 2        | 1     | 6       | 4       | 4 1        |
| Minimum Initial (s)    | 10.0      | 10.0     | 4.0   | 10.0    | 4.0     |            |
| Minimum Split (s)      | 32.2      | 32.2     | 8.4   | 15.7    | 37.4    |            |
| Total Split (s)        | 25.9      | 25.9     | 69.0  | 94.9    | 25.1    | 94.1       |
| Total Split (%)        | 21.6%     | 21.6%    | 57.5% | 79.1%   | 20.9%   | 78.4%      |
| Yellow Time (s)        | 4.3       | 4.3      | 3.4   | 4.7     | 3.4     |            |
| All-Red Time (s)       | 1.0       | 1.0      | 1.0   | 1.0     | 1.0     |            |
| Lead/Lag               | Lag       | Lag      | Lead  |         |         |            |
| Lead-Lag Optimize?     |           |          |       |         |         |            |
| Recall Mode            | Min       | Min      | C-Min | C-Min   | None    |            |
| Act Effct Green (s)    | 18.9      | 18.9     | 64.6  | 87.5    | 24.5    | 93.1       |
| Actuated g/C Ratio     | 0.16      | 0.16     | 0.54  | 0.73    | 0.20    | 0.78       |
| v/c Ratio              | 0.33      | 0.25     | 0.38  | 0.24    | 0.32    | 0.35       |
| Control Delay          | 44.2      | 9.4      | 20.3  | 6.7     | 39.6    | 5.4        |
| Queue Delay            | 0.0       | 0.0      | 0.0   | 0.0     | 0.0     | 0.0        |
| Total Delay            | 44.2      | 9.4      | 20.3  | 6.7     | 39.6    | 5.4        |
| LOS                    | D         | Α        | С     | Α       | D       | Α          |
| Approach Delay         | 36.4      |          |       | 13.1    | 13.3    |            |
| Approach LOS           | D         |          |       | В       | В       |            |
| Intersection Summary   |           |          |       |         |         |            |
| Cycle Length: 120      |           |          |       |         |         |            |
| Actuated Cycle Length  | : 120     |          |       |         |         |            |
| Offset: 50 (42%), Refe |           | o phase  | 1:WBL | and 6:\ | WBT. St | tart of Ye |
| Natural Cycle: 90      |           | - p./400 |       |         | , 0     |            |
| Control Type: Actuated | 1-Coordin | hated    |       |         |         |            |

Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.38

Intersection Signal Delay: 16.0
Intersection Capacity Utilization 53.2%
Analysis Period (min) 15 Intersection LOS: B ICU Level of Service A

Splits and Phases: 101: N Torrey Pines Rd & Torrey Pines Road



Timings Synchro 6 Report Page 1

Fehr & Peers Associates, Inc.

Venter Inst. Site Access Study 101: N Torrey Pines Rd & Torrey Pines Road Existing Conditions AM PEAK HOUR

|                         | <b>→</b> | $\rightarrow$ | •    | <b>—</b> | 1    | <b>/</b> |
|-------------------------|----------|---------------|------|----------|------|----------|
| Lane Group              | EBT      | EBR           | WBL  | WBT      | NBL  | NBR      |
| Lane Group Flow (vph)   | 266      | 77            | 699  | 780      | 226  | 755      |
| v/c Ratio               | 0.33     | 0.25          | 0.38 | 0.24     | 0.32 | 0.35     |
| Control Delay           | 44.2     | 9.4           | 20.3 | 6.7      | 39.6 | 5.4      |
| Queue Delay             | 0.0      | 0.0           | 0.0  | 0.0      | 0.0  | 0.0      |
| Total Delay             | 44.2     | 9.4           | 20.3 | 6.7      | 39.6 | 5.4      |
| Queue Length 50th (ft)  | 71       | 0             | 167  | 97       | 70   | 64       |
| Queue Length 95th (ft)  | 87       | 39            | 270  | 120      | 103  | 159      |
| Internal Link Dist (ft) | 359      |               |      | 798      | 294  |          |
| Turn Bay Length (ft)    |          | 150           | 340  |          | 200  |          |
| Base Capacity (vph)     | 1036     | 376           | 2088 | 3536     | 815  | 2356     |
| Starvation Cap Reductn  | 0        | 0             | 0    | 0        | 0    | 0        |
| Spillback Cap Reductn   | 0        | 0             | 0    | 0        | 0    | 0        |
| Storage Cap Reductn     | 0        | 0             | 0    | 0        | 0    | 0        |
| Reduced v/c Ratio       | 0.26     | 0.20          | 0.33 | 0.22     | 0.28 | 0.32     |
| Intersection Summary    |          |               |      |          |      |          |

Queues Synchro 6 Report Page 2

|                          | -         | •    | •     | <b>←</b>   | 1       | <b>/</b>       |      |  |
|--------------------------|-----------|------|-------|------------|---------|----------------|------|--|
| Movement                 | EBT       | EBR  | WBL   | WBT        | NBL     | NBR            |      |  |
| Lane Configurations      | ተተተ       | 7    | ሻሻ    | <b>^</b> ^ | ሻሻ      | 11             |      |  |
| Ideal Flow (vphpl)       | 1900      | 1900 | 1900  | 1900       | 1900    | 1900           |      |  |
| Total Lost time (s)      | 4.0       | 4.0  | 4.0   | 4.0        | 4.0     | 4.0            |      |  |
| Lane Util. Factor        | 0.91      | 1.00 | 0.97  | *0.80      | 0.97    | 0.88           |      |  |
| Frpb, ped/bikes          | 1.00      | 0.97 | 1.00  | 1.00       | 1.00    | 1.00           |      |  |
| Flpb, ped/bikes          | 1.00      | 1.00 | 1.00  | 1.00       | 1.00    | 1.00           |      |  |
| Frt                      | 1.00      | 0.85 | 1.00  | 1.00       | 1.00    | 0.85           |      |  |
| Flt Protected            | 1.00      | 1.00 | 0.95  | 1.00       | 0.95    | 1.00           |      |  |
| Satd. Flow (prot)        | 5085      | 1544 | 3433  | 4471       | 3433    | 2787           |      |  |
| FIt Permitted            | 1.00      | 1.00 | 0.95  | 1.00       | 0.95    | 1.00           |      |  |
| Satd. Flow (perm)        | 5085      | 1544 | 3433  | 4471       | 3433    | 2787           |      |  |
| Volume (vph)             | 250       | 72   | 657   | 733        | 212     | 710            |      |  |
| Peak-hour factor, PHF    | 0.94      | 0.94 | 0.94  | 0.94       | 0.94    | 0.94           |      |  |
| Adj. Flow (vph)          | 266       | 77   | 699   | 780        | 226     | 755            |      |  |
| RTOR Reduction (vph)     | 0         | 65   | 0     | 0          | 0       | 0              |      |  |
| Lane Group Flow (vph)    | 266       | 12   | 699   | 780        | 226     | 755            |      |  |
| Confl. Peds. (#/hr)      |           | 10   |       |            |         | 10             |      |  |
| Furn Type                |           | Perm | Prot  |            |         | pt+ov          |      |  |
| Protected Phases         | 2         |      | 1     | 6          | 4       | 4 1            |      |  |
| Permitted Phases         |           | 2    |       |            |         |                |      |  |
| Actuated Green, G (s)    | 17.6      | 17.6 | 64.2  | 85.8       | 24.1    | 92.7           |      |  |
| Effective Green, g (s)   | 18.9      | 18.9 | 64.6  | 87.5       | 24.5    | 93.1           |      |  |
| Actuated g/C Ratio       | 0.16      | 0.16 | 0.54  | 0.73       | 0.20    | 0.78           |      |  |
| Clearance Time (s)       | 5.3       | 5.3  | 4.4   | 5.7        | 4.4     |                |      |  |
| Vehicle Extension (s)    | 4.2       | 4.2  | 2.0   | 3.6        | 2.0     |                |      |  |
| _ane Grp Cap (vph)       | 801       | 243  | 1848  | 3260       | 701     | 2162           |      |  |
| //s Ratio Prot           | c0.05     |      | c0.20 | 0.17       | 0.07    | c0.27          |      |  |
| //s Ratio Perm           |           | 0.01 |       |            |         |                |      |  |
| //c Ratio                | 0.33      | 0.05 | 0.38  | 0.24       | 0.32    | 0.35           |      |  |
| Uniform Delay, d1        | 44.9      | 42.9 | 16.1  | 5.3        | 40.7    | 4.1            |      |  |
| Progression Factor       | 1.00      | 1.00 | 1.00  | 1.00       | 1.00    | 1.00           |      |  |
| ncremental Delay, d2     | 0.4       | 0.1  | 0.6   | 0.2        | 0.1     | 0.0            |      |  |
| Delay (s)                | 45.3      | 43.1 | 16.6  | 5.5        | 40.8    | 4.2            |      |  |
| Level of Service         | D         | D    | В     | Α          | D       | Α              |      |  |
| Approach Delay (s)       | 44.8      |      |       | 10.8       | 12.6    |                |      |  |
| Approach LOS             | D         |      |       | В          | В       |                |      |  |
| Intersection Summary     |           |      |       |            |         |                |      |  |
| HCM Average Control D    |           |      | 15.6  | H          | ICM Le  | vel of Service | В    |  |
| HCM Volume to Capacit    |           |      | 0.37  |            |         |                |      |  |
| Actuated Cycle Length (  | ,         |      | 120.0 |            |         | ost time (s)   | 12.0 |  |
| Intersection Capacity Ut | ilization |      | 53.2% | IC         | CU Leve | el of Service  | Α    |  |
| Analysis Period (min)    |           |      | 15    |            |         |                |      |  |
| c Critical Lane Group    |           |      |       |            |         |                |      |  |

|                         | -           | _       | •     |         | ١,       | - 1         | •       | •           |
|-------------------------|-------------|---------|-------|---------|----------|-------------|---------|-------------|
| Lane Group              | EBL         | EBT     | WBL   | WBT     | NBL      | NBT         | SBL     | SBT         |
| Lane Configurations     |             | 4       |       | 4       | ሻ        | <b>†</b> î> | ٦       | <b>↑</b> 1> |
| Volume (vph)            | 58          | 33      | 22    | 38      | 4        | 842         | 8       | 671         |
| Turn Type               | Perm        |         | Perm  |         | Prot     |             | Prot    |             |
| Protected Phases        |             | 4       |       | 4       | 5        | 2           | 1       | 6           |
| Permitted Phases        | 4           |         | 4     |         |          |             |         |             |
| Detector Phases         | 4           | 4       | 4     | 4       | 5        | 2           | 1       | 6           |
| Minimum Initial (s)     | 4.0         | 4.0     | 4.0   | 4.0     | 4.0      | 10.0        | 4.0     | 17.0        |
| Minimum Split (s)       | 36.9        | 36.9    | 36.9  | 36.9    | 8.4      | 22.5        | 8.4     | 22.2        |
| Total Split (s)         | 33.4        | 33.4    | 33.4  | 33.4    | 19.8     | 55.1        | 19.5    | 54.8        |
| Total Split (%)         |             |         |       |         |          | 51.0%       |         |             |
| Yellow Time (s)         | 3.9         | 3.9     | 3.9   | 3.9     | 3.4      | 4.5         | 3.4     | 4.2         |
| All-Red Time (s)        | 1.0         | 1.0     | 1.0   | 1.0     | 1.0      | 1.0         | 1.0     | 1.0         |
| Lead/Lag                |             |         |       |         | Lead     | Lag         | Lead    | Lag         |
| Lead-Lag Optimize?      |             |         |       |         |          |             |         |             |
| Recall Mode             | None        |         | None  | None    |          | C-Min       |         | C-Min       |
| Act Effct Green (s)     |             | 14.6    |       | 14.6    | 5.2      | 83.3        | 5.4     | 83.4        |
| Actuated g/C Ratio      |             | 0.14    |       | 0.14    |          | 0.77        | 0.05    | 0.77        |
| v/c Ratio               |             | 0.53    |       | 0.38    | 0.05     | 0.36        | 0.10    | 0.29        |
| Control Delay           |             | 40.8    |       | 32.6    |          | 6.2         | 49.0    | 5.5         |
| Queue Delay             |             | 0.0     |       | 0.0     |          | 0.0         | 0.0     | 0.0         |
| Total Delay             |             | 40.8    |       | 32.6    | 49.0     | 6.2         | 49.0    | 5.5         |
| LOS                     |             | D       |       | С       | D        | Α           | D       | Α           |
| Approach Delay          |             | 40.8    |       | 32.6    |          | 6.3         |         | 6.0         |
| Approach LOS            |             | D       |       | С       |          | Α           |         | Α           |
| Intersection Summary    |             |         |       |         |          |             |         |             |
| Cycle Length: 108       |             |         |       |         |          |             |         |             |
| Actuated Cycle Length   |             |         |       |         |          |             |         |             |
| Offset: 98 (91%), Refe  | renced to   | o phase | 2:NBT | and 6:S | SBT, Sta | art of Ye   | llow    |             |
| Natural Cycle: 70       |             |         |       |         |          |             |         |             |
| Control Type: Actuated  | d-Coordir   | nated   |       |         |          |             |         |             |
| Maximum v/c Ratio: 0.   | 53          |         |       |         |          |             |         |             |
| Intersection Signal Del | ay: 9.3     |         |       |         | Intersec | tion LOS    | S: A    |             |
| Intersection Capacity U | Jtilization | 147.4%  |       |         | ICU Lev  | el of Se    | rvice A |             |
| Analysis Period (min) 1 | 15          |         |       |         |          |             |         |             |
|                         |             |         |       |         |          |             |         |             |

Splits and Phases: 102: Glenbrook Way & Torrey Pines Road **\$** ø4

HCM Signalized Intersection Capacity Analysis

Synchro 6 Report Page 3

Synchro 6 Report Page 4

Fehr & Peers Associates, Inc.

Fehr & Peers Associates, Inc.

Timings

Venter Inst. Site Access Study 102: Glenbrook Way & Torrey Pines Road

Existing Conditions AM PEAK HOUR

|                         | -    | <b>←</b> | 4    | <b>†</b> | <b>&gt;</b> | ļ    |
|-------------------------|------|----------|------|----------|-------------|------|
| Lane Group              | EBT  | WBT      | NBL  | NBT      | SBL         | SBT  |
| Lane Group Flow (vph)   | 108  | 89       | 4    | 970      | 9           | 776  |
| v/c Ratio               | 0.53 | 0.38     | 0.05 | 0.36     | 0.10        | 0.29 |
| Control Delay           | 40.8 | 32.6     | 49.0 | 6.2      | 49.0        | 5.5  |
| Queue Delay             | 0.0  | 0.0      | 0.0  | 0.0      | 0.0         | 0.0  |
| Total Delay             | 40.8 | 32.6     | 49.0 | 6.2      | 49.0        | 5.5  |
| Queue Length 50th (ft)  | 69   | 47       | 3    | 68       | 6           | 51   |
| Queue Length 95th (ft)  | 104  | 80       | 14   | 257      | 22          | 191  |
| Internal Link Dist (ft) | 200  | 226      |      | 276      |             | 322  |
| Turn Bay Length (ft)    |      |          |      |          | 150         |      |
| Base Capacity (vph)     | 403  | 457      | 259  | 2694     | 254         | 2698 |
| Starvation Cap Reductn  | 0    | 0        | 0    | 0        | 0           | 0    |
| Spillback Cap Reductn   | 0    | 0        | 0    | 0        | 0           | 0    |
| Storage Cap Reductn     | 0    | 0        | 0    | 0        | 0           | 0    |
| Reduced v/c Ratio       | 0.27 | 0.19     | 0.02 | 0.36     | 0.04        | 0.29 |
| Intersection Summary    |      |          |      |          |             |      |

Venter Inst. Site Access Study 102: Glenbrook Way & Torrey Pines Road

Existing Conditions AM PEAK HOUR

|                          | ۶        | <b>→</b> | •     | •    | •         | •         | 4      | <b>†</b> | <i>&gt;</i> | -     | ļ          | 1    |
|--------------------------|----------|----------|-------|------|-----------|-----------|--------|----------|-------------|-------|------------|------|
| Movement                 | EBL      | EBT      | EBR   | WBL  | WBT       | WBR       | NBL    | NBT      | NBR         | SBL   | SBT        | SBR  |
| Lane Configurations      |          | 4        |       |      | 4         |           | ሻ      | ħ₽       |             | 7     | <b>↑</b> ↑ |      |
| Ideal Flow (vphpl)       | 1900     | 1900     | 1900  | 1900 | 1900      | 1900      | 1900   | 1900     | 1900        | 1900  | 1900       | 1900 |
| Total Lost time (s)      |          | 4.0      |       |      | 4.0       |           | 4.0    | 4.0      |             | 4.0   | 4.0        |      |
| Lane Util. Factor        |          | 1.00     |       |      | 1.00      |           | 1.00   | 0.95     |             | 1.00  | 0.95       |      |
| Frpb, ped/bikes          |          | 1.00     |       |      | 0.99      |           | 1.00   | 1.00     |             | 1.00  | 1.00       |      |
| Flpb, ped/bikes          |          | 1.00     |       |      | 1.00      |           | 1.00   | 1.00     |             | 1.00  | 1.00       |      |
| Frt                      |          | 0.99     |       |      | 0.96      |           | 1.00   | 0.99     |             | 1.00  | 0.99       |      |
| Flt Protected            |          | 0.97     |       |      | 0.99      |           | 0.95   | 1.00     |             | 0.95  | 1.00       |      |
| Satd. Flow (prot)        |          | 1773     |       |      | 1757      |           | 1770   | 3492     |             | 1770  | 3490       |      |
| Flt Permitted            |          | 0.73     |       |      | 0.91      |           | 0.95   | 1.00     |             | 0.95  | 1.00       |      |
| Satd. Flow (perm)        |          | 1324     |       |      | 1614      |           | 1770   | 3492     |             | 1770  | 3490       |      |
| Volume (vph)             | 58       | 33       | 10    | 22   | 38        | 22        | 4      | 842      | 60          | 8     | 671        | 50   |
| Peak-hour factor, PHF    | 0.93     | 0.93     | 0.93  | 0.93 | 0.93      | 0.93      | 0.93   | 0.93     | 0.93        | 0.93  | 0.93       | 0.93 |
| Adj. Flow (vph)          | 62       | 35       | 11    | 24   | 41        | 24        | 4      | 905      | 65          | 9     | 722        | 54   |
| RTOR Reduction (vph)     | 0        | 4        | 0     | 0    | 15        | 0         | 0      | 2        | 0           | 0     | 3          | 0    |
| Lane Group Flow (vph)    | 0        | 104      | 0     | 0    | 74        | 0         | 4      | 968      | 0           | 9     | 773        | 0    |
| Confl. Peds. (#/hr)      | 10       |          | 10    | 10   |           | 10        |        |          | 10          |       |            | 10   |
| Turn Type                | Perm     |          |       | Perm |           |           | Prot   |          |             | Prot  |            |      |
| Protected Phases         |          | 4        |       |      | 4         |           | 5      | 2        |             | 1     | 6          |      |
| Permitted Phases         | 4        |          |       | 4    |           |           |        |          |             |       |            |      |
| Actuated Green, G (s)    |          | 13.7     |       |      | 13.7      |           | 1.1    | 78.3     |             | 1.2   | 78.7       |      |
| Effective Green, g (s)   |          | 14.6     |       |      | 14.6      |           | 1.5    | 79.8     |             | 1.6   | 79.9       |      |
| Actuated g/C Ratio       |          | 0.14     |       |      | 0.14      |           | 0.01   | 0.74     |             | 0.01  | 0.74       |      |
| Clearance Time (s)       |          | 4.9      |       |      | 4.9       |           | 4.4    | 5.5      |             | 4.4   | 5.2        |      |
| Vehicle Extension (s)    |          | 2.0      |       |      | 2.0       |           | 2.0    | 5.4      |             | 2.0   | 5.9        |      |
| Lane Grp Cap (vph)       |          | 179      |       |      | 218       |           | 25     | 2580     |             | 26    | 2582       |      |
| v/s Ratio Prot           |          |          |       |      |           |           | 0.00   | c0.28    |             | c0.01 | 0.22       |      |
| v/s Ratio Perm           |          | c0.08    |       |      | 0.05      |           |        |          |             |       |            |      |
| v/c Ratio                |          | 0.58     |       |      | 0.34      |           | 0.16   | 0.38     |             | 0.35  | 0.30       |      |
| Uniform Delay, d1        |          | 43.8     |       |      | 42.3      |           | 52.6   | 5.1      |             | 52.7  | 4.7        |      |
| Progression Factor       |          | 1.00     |       |      | 1.00      |           | 1.00   | 1.00     |             | 1.00  | 1.00       |      |
| Incremental Delay, d2    |          | 2.8      |       |      | 0.3       |           | 1.1    | 0.4      |             | 2.9   | 0.3        |      |
| Delay (s)                |          | 46.6     |       |      | 42.7      |           | 53.7   | 5.5      |             | 55.6  | 5.0        |      |
| Level of Service         |          | D        |       |      | D         |           | D      | Α        |             | Е     | Α          |      |
| Approach Delay (s)       |          | 46.6     |       |      | 42.7      |           |        | 5.7      |             |       | 5.6        |      |
| Approach LOS             |          | D        |       |      | D         |           |        | Α        |             |       | Α          |      |
| Intersection Summary     |          |          |       |      |           |           |        |          |             |       |            |      |
| HCM Average Control D    | elay     |          | 9.6   | F    | ICM Lev   | vel of Se | ervice |          | Α           |       |            |      |
| HCM Volume to Capacit    | ty ratio |          | 0.41  |      |           |           |        |          |             |       |            |      |
| Actuated Cycle Length (  |          |          | 108.0 | 5    | Sum of le | ost time  | (s)    |          | 12.0        |       |            |      |
| Intersection Capacity Ut |          |          | 47.4% |      |           | el of Ser |        |          | Α           |       |            |      |
| Analysis Period (min)    |          |          | 15    |      |           |           |        |          |             |       |            |      |
| c Critical Lane Group    |          |          |       |      |           |           |        |          |             |       |            |      |

c Critical Lane Group

Synchro 6 Report Page 5

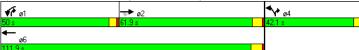
HCM Signalized Intersection Capacity Analysis

Synchro 6 Report Page 6

Fehr & Peers Associates, Inc.

Queues

Venter Inst. Site Access Study 101: N Torrey Pines Rd & Torrey Pines Road Existing Conditions PM Peak Hour


|                         | -        | •       | •       | •     | 7       |           |
|-------------------------|----------|---------|---------|-------|---------|-----------|
| Lane Group              | EBT      | EBR     | WBL     | WBT   | NBL     | NBR       |
| Lane Configurations     | ተተተ      | 7       | ሻሻ      | ተተተ   | ሻሻ      | 77        |
| Volume (vph)            | 985      | 314     | 928     | 538   | 85      |           |
| Turn Type               |          | Perm    | Prot    |       |         | pt+ov     |
| Protected Phases        | 2        |         | 1       | 6     | 4       | 4 1       |
| Permitted Phases        |          | 2       |         |       |         |           |
| Detector Phases         | 2        | 2       | 1       | 6     | 4       | 4 1       |
| Minimum Initial (s)     | 10.0     | 10.0    | 4.0     | 10.0  | 4.0     |           |
| Minimum Split (s)       | 32.3     | 32.3    | 8.4     | 15.7  | 37.4    |           |
| Total Split (s)         | 61.9     | 61.9    | 50.0    | 111.9 | 42.1    | 92.1      |
| Total Split (%)         | 40.2%    | 40.2%   | 32.5%   | 72.7% | 27.3%   | 59.8%     |
| Yellow Time (s)         | 4.3      | 4.3     | 3.4     | 4.7   | 3.4     |           |
| All-Red Time (s)        | 1.0      | 1.0     | 1.0     | 1.0   | 1.0     |           |
| Lead/Lag                | Lag      | Lag     | Lead    |       |         |           |
| Lead-Lag Optimize?      |          |         |         |       |         |           |
| Recall Mode             | C-Min    | C-Min   | Min     | C-Min | None    |           |
| Act Effct Green (s)     | 58.9     | 58.9    | 52.0    | 114.9 | 31.1    | 87.1      |
| Actuated g/C Ratio      | 0.38     | 0.38    | 0.34    | 0.75  | 0.20    | 0.57      |
| v/c Ratio               | 0.54     | 0.46    | 0.85    | 0.17  | 0.13    | 0.44      |
| Control Delay           | 39.0     | 13.6    | 55.0    | 6.0   | 49.7    | 24.8      |
| Queue Delay             | 1.0      | 0.7     | 0.0     | 0.0   | 0.0     | 0.0       |
| Total Delay             | 40.0     | 14.2    | 55.0    | 6.0   | 49.7    | 24.8      |
| LOS                     | D        | В       | Е       | Α     | D       | С         |
| Approach Delay          | 33.8     |         |         | 37.0  | 27.7    |           |
| Approach LOS            | С        |         |         | D     | С       |           |
| Intersection Summary    | ,        |         |         |       |         |           |
| Cycle Length: 154       |          |         |         |       |         |           |
| Actuated Cycle Length   |          |         |         |       |         |           |
| Official: 115 (750/) Do | faranaad | to aboo | A OLEDI | and C | MAIDT C | tout of V |

Offset: 115 (75%), Referenced to phase 2:EBT and 6:WBT, Start of Yellow

Natural Cycle: 100
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.85

Intersection Signal Delay: 33.9
Intersection Capacity Utilization 69.2%
Analysis Period (min) 15 Intersection LOS: C
ICU Level of Service C

Splits and Phases: 101: N Torrey Pines Rd & Torrey Pines Road



Timings Synchro 6 Report Page 1

Fehr & Peers Associates, Inc.

Venter Inst. Site Access Study 101: N Torrey Pines Rd & Torrey Pines Road Existing Conditions PM Peak Hour

|                         | -    | $\rightarrow$ | <    | <b>←</b> | 1    | -    |
|-------------------------|------|---------------|------|----------|------|------|
| Lane Group              | EBT  | EBR           | WBL  | WBT      | NBL  | NBR  |
| Lane Group Flow (vph)   | 1048 | 334           | 987  | 572      | 90   | 691  |
| v/c Ratio               | 0.54 | 0.46          | 0.85 | 0.17     | 0.13 | 0.44 |
| Control Delay           | 39.0 | 13.6          | 55.0 | 6.0      | 49.7 | 24.8 |
| Queue Delay             | 1.0  | 0.7           | 0.0  | 0.0      | 0.0  | 0.0  |
| Total Delay             | 40.0 | 14.2          | 55.0 | 6.0      | 49.7 | 24.8 |
| Queue Length 50th (ft)  | 316  | 76            | 462  | 67       | 36   | 209  |
| Queue Length 95th (ft)  | 351  | 164           | 571  | 82       | 66   | 246  |
| Internal Link Dist (ft) | 366  |               |      | 798      | 314  |      |
| Turn Bay Length (ft)    |      | 150           | 340  |          | 200  |      |
| Base Capacity (vph)     | 2027 | 751           | 1165 | 3335     | 849  | 1581 |
| Starvation Cap Reductn  | 652  | 167           | 0    | 0        | 0    | 0    |
| Spillback Cap Reductn   | 0    | 0             | 0    | 0        | 0    | 0    |
| Storage Cap Reductn     | 0    | 0             | 0    | 0        | 0    | 0    |
| Reduced v/c Ratio       | 0.76 | 0.57          | 0.85 | 0.17     | 0.11 | 0.44 |
| Intersection Summary    |      |               |      |          |      |      |

Queues Synchro 6 Report Page 2

Delay (s) Level of Service

Approach Delay (s)

Approach LOS

SBT

Prot

| TO THE FORTOGY T MIDE  | , r.u. u. | 10110 | 1 11100 | rtoaa |      |          |
|------------------------|-----------|-------|---------|-------|------|----------|
|                        | <b>→</b>  | •     | •       | +     | 1    | <b>/</b> |
| Movement               | EBT       | EBR   | WBL     | WBT   | NBL  | NBR      |
| Lane Configurations    | ተተተ       | 7     | ሻሻ      | ተተተ   | ሻሻ   | 77       |
| Ideal Flow (vphpl)     | 1900      | 1900  | 1900    | 1900  | 1900 | 1900     |
| Total Lost time (s)    | 4.0       | 4.0   | 4.0     | 4.0   | 4.0  | 4.0      |
| Lane Util. Factor      | 0.91      | 1.00  | 0.97    | *0.80 | 0.97 | 0.88     |
| Frpb, ped/bikes        | 1.00      | 0.97  | 1.00    | 1.00  | 1.00 | 1.00     |
| Flpb, ped/bikes        | 1.00      | 1.00  | 1.00    | 1.00  | 1.00 | 1.00     |
| Frt                    | 1.00      | 0.85  | 1.00    | 1.00  | 1.00 | 0.85     |
| Flt Protected          | 1.00      | 1.00  | 0.95    | 1.00  | 0.95 | 1.00     |
| Satd. Flow (prot)      | 5085      | 1538  | 3433    | 4471  | 3433 | 2787     |
| Flt Permitted          | 1.00      | 1.00  | 0.95    | 1.00  | 0.95 | 1.00     |
| Satd. Flow (perm)      | 5085      | 1538  | 3433    | 4471  | 3433 | 2787     |
| Volume (vph)           | 985       | 314   | 928     | 538   | 85   | 650      |
| Peak-hour factor, PHF  | 0.94      | 0.94  | 0.94    | 0.94  | 0.94 | 0.94     |
| Adj. Flow (vph)        | 1048      | 334   | 987     | 572   | 90   | 691      |
| RTOR Reduction (vph)   | 0         | 141   | 0       | 0     | 0    | 0        |
| Lane Group Flow (vph)  | 1048      | 193   | 987     | 572   | 90   | 691      |
| Confl. Peds. (#/hr)    |           | 10    |         |       |      | 10       |
| Turn Type              |           | Perm  | Prot    |       |      | pt+ov    |
| Protected Phases       | 2         |       | 1       | 6     | 4    | 4 1      |
| Permitted Phases       |           | 2     |         |       |      |          |
| Actuated Green, G (s)  | 57.6      | 57.6  | 51.6    | 113.2 | 30.7 | 86.7     |
| Effective Green, g (s) | 58.9      | 58.9  | 52.0    | 114.9 | 31.1 | 87.1     |
| Actuated g/C Ratio     | 0.38      | 0.38  | 0.34    | 0.75  | 0.20 | 0.57     |
| Clearance Time (s)     | 5.3       | 5.3   | 4.4     | 5.7   | 4.4  |          |
| Vehicle Extension (s)  | 4.2       | 4.2   | 2.0     | 3.6   | 2.0  |          |
| Lane Grp Cap (vph)     | 1945      | 588   | 1159    | 3336  | 693  | 1576     |
| v/s Ratio Prot         | c0.21     |       | c0.29   | 0.13  | 0.03 | c0.25    |
| v/s Ratio Perm         |           | 0.13  |         |       |      |          |
| v/c Ratio              | 0.54      | 0.33  | 0.85    | 0.17  | 0.13 | 0.44     |
| Uniform Delay, d1      | 37.0      | 33.6  | 47.4    | 5.7   | 50.4 | 19.3     |
| Progression Factor     | 1.00      | 1.00  | 1.00    | 1.00  | 1.00 | 1.26     |
| Incremental Delay, d2  | 1.1       | 1.5   | 6.0     | 0.1   | 0.0  | 0.1      |
| Delay (s)              | 38.1      | 35.1  | 53.4    | 5.8   | 50.2 | 24.4     |

| Intersection Summary              |       |                      |      |  |
|-----------------------------------|-------|----------------------|------|--|
| HCM Average Control Delay         | 34.6  | HCM Level of Service | С    |  |
| HCM Volume to Capacity ratio      | 0.64  |                      |      |  |
| Actuated Cycle Length (s)         | 154.0 | Sum of lost time (s) | 12.0 |  |
| Intersection Capacity Utilization | 69.2% | ICU Level of Service | С    |  |
| Analysis Period (min)             | 15    |                      |      |  |

35.9 27.3

D D A D

c Critical Lane Group

D

37.3

| HCM Signalized Intersection Capacity Analysis | Synchro 6 Re |
|-----------------------------------------------|--------------|
| , , ,                                         | , D-         |

| 6 Report<br>Page 3 | Timings | Syn |
|--------------------|---------|-----|

102: Glenbrook Way & Torrey Pines Road

Venter Inst. Site Access Study

Lane Group

Volume (vph)

Turn Type

Lane Configurations

Protected Phases

Splits and Phases:

Fehr & Peers Associates, Inc.

102: Glenbrook Way & Torrey Pines Road

67

Perm

20

Perm

| Permitted Phases        | 4         |       | 4     |         |         |           |         |       |  |
|-------------------------|-----------|-------|-------|---------|---------|-----------|---------|-------|--|
| Detector Phases         | 4         | 4     | 4     | 4       | 5       | 2         | 1       | 6     |  |
| Minimum Initial (s)     | 4.0       | 4.0   | 4.0   | 4.0     | 4.0     | 10.0      | 4.0     | 17.0  |  |
| Minimum Split (s)       | 36.9      | 36.9  | 36.9  | 36.9    | 8.4     | 22.5      | 8.4     | 22.2  |  |
| Total Split (s)         | 32.4      | 32.4  | 32.4  | 32.4    | 14.2    | 30.1      | 14.5    | 30.4  |  |
| Total Split (%)         | 42.1%     | 42.1% | 42.1% | 42.1%   | 18.4%   | 39.1%     | 18.8%   | 39.5% |  |
| Yellow Time (s)         | 3.9       | 3.9   | 3.9   | 3.9     | 3.4     | 4.5       | 3.4     | 4.2   |  |
| All-Red Time (s)        | 1.0       | 1.0   | 1.0   | 1.0     | 1.0     | 1.0       | 1.0     | 1.0   |  |
| Lead/Lag                |           |       |       |         | Lead    | Lag       | Lead    | Lag   |  |
| Lead-Lag Optimize?      |           |       |       |         |         |           |         |       |  |
| Recall Mode             | None      | None  | None  | None    |         | C-Min     |         | C-Min |  |
| Act Effct Green (s)     |           | 12.8  |       | 12.8    | 5.2     | 51.8      | 6.8     | 56.9  |  |
| Actuated g/C Ratio      |           | 0.17  |       | 0.17    | 0.07    | 0.67      | 0.09    | 0.74  |  |
| v/c Ratio               |           | 0.43  |       | 0.24    | 0.04    | 0.31      | 0.30    | 0.48  |  |
| Control Delay           |           | 26.2  |       | 22.0    | 33.6    | 9.6       | 34.8    | 16.1  |  |
| Queue Delay             |           | 0.0   |       | 0.0     | 0.0     | 0.0       | 0.0     | 0.0   |  |
| Total Delay             |           | 26.2  |       | 22.0    | 33.6    | 9.6       | 34.8    | 16.1  |  |
| LOS                     |           | С     |       | С       | С       | Α         | С       | В     |  |
| Approach Delay          |           | 26.2  |       | 22.0    |         | 9.8       |         | 16.8  |  |
| Approach LOS            |           | С     |       | С       |         | Α         |         | В     |  |
| Intersection Summary    |           |       |       |         |         |           |         |       |  |
| Cycle Length: 77        |           |       |       |         |         |           |         |       |  |
| Actuated Cycle Length   | ı: 77     |       |       |         |         |           |         |       |  |
| Offset: 76 (99%), Refe  | renced to | phase | 2:NBT | and 6:S | BT, Sta | art of Ye | llow    |       |  |
| Natural Cycle: 80       |           |       |       |         |         |           |         |       |  |
| Control Type: Actuated  |           | nated |       |         |         |           |         |       |  |
| Maximum v/c Ratio: 0.   |           |       |       |         |         |           |         |       |  |
| Intersection Signal De  |           |       |       |         |         | tion LOS  |         |       |  |
| Intersection Capacity I |           | 60.5% |       |         | CU Lev  | el of Se  | rvice B |       |  |
| Analysis Period (min)   | 15        |       |       |         |         |           |         |       |  |
|                         |           |       |       |         |         |           |         |       |  |

Prot

**\$** ₀4

Venter Inst. Site Access Study 102: Glenbrook Way & Torrey Pines Road Existing Conditions PM Peak Hour

|                         | -       | -        | 1     | 1        | -      | ţ       |
|-------------------------|---------|----------|-------|----------|--------|---------|
| Lane Group              | EBT     | WBT      | NBL   | NBT      | SBL    | SBT     |
| Lane Group Flow (vph)   | 107     | 68       | 5     | 725      | 47     | 1233    |
| v/c Ratio               | 0.43    | 0.24     | 0.04  | 0.31     | 0.30   | 0.48    |
| Control Delay           | 26.2    | 22.0     | 33.6  | 9.6      | 34.8   | 16.1    |
| Queue Delay             | 0.0     | 0.0      | 0.0   | 0.0      | 0.0    | 0.0     |
| Total Delay             | 26.2    | 22.0     | 33.6  | 9.6      | 34.8   | 16.1    |
| Queue Length 50th (ft)  | 47      | 26       | 2     | 74       | 31     | 521     |
| Queue Length 95th (ft)  | 68      | 44       | 12    | 198      | m37    | 703     |
| Internal Link Dist (ft) | 339     | 332      |       | 281      |        | 304     |
| Turn Bay Length (ft)    |         |          |       |          | 150    |         |
| Base Capacity (vph)     | 551     | 623      | 234   | 2355     | 241    | 2580    |
| Starvation Cap Reductn  | 0       | 0        | 0     | 0        | 0      | 0       |
| Spillback Cap Reductn   | 0       | 0        | 0     | 0        | 0      | 0       |
| Storage Cap Reductn     | 0       | 0        | 0     | 0        | 0      | 0       |
| Reduced v/c Ratio       | 0.19    | 0.11     | 0.02  | 0.31     | 0.20   | 0.48    |
| Intersection Summary    |         |          |       |          |        |         |
| m Volume for 95th per   | centile | queue is | meter | ed by up | stream | signal. |

Venter Inst. Site Access Study 102: Glenbrook Way & Torrey Pines Road Existing Conditions PM Peak Hour

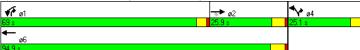
|                          | ۶    | -     | $\rightarrow$ | •    | <b>←</b>  | •         | 4      | <b>†</b>   | ~    | <b>&gt;</b> | ļ          | 1    |
|--------------------------|------|-------|---------------|------|-----------|-----------|--------|------------|------|-------------|------------|------|
| Movement                 | EBL  | EBT   | EBR           | WBL  | WBT       | WBR       | NBL    | NBT        | NBR  | SBL         | SBT        | SBR  |
| Lane Configurations      |      | 4     |               |      | 4         |           | ሻ      | <b>†</b> } |      | 7           | <b>↑</b> ↑ |      |
| Ideal Flow (vphpl)       | 1900 | 1900  | 1900          | 1900 | 1900      | 1900      | 1900   | 1900       | 1900 | 1900        | 1900       | 1900 |
| Total Lost time (s)      |      | 4.0   |               |      | 4.0       |           | 4.0    | 4.0        |      | 4.0         | 4.0        |      |
| Lane Util. Factor        |      | 1.00  |               |      | 1.00      |           | 1.00   | 0.95       |      | 1.00        | 0.95       |      |
| Frpb, ped/bikes          |      | 1.00  |               |      | 1.00      |           | 1.00   | 1.00       |      | 1.00        | 1.00       |      |
| Flpb, ped/bikes          |      | 1.00  |               |      | 1.00      |           | 1.00   | 1.00       |      | 1.00        | 1.00       |      |
| Frt                      |      | 0.99  |               |      | 0.98      |           | 1.00   | 0.99       |      | 1.00        | 0.99       |      |
| Flt Protected            |      | 0.97  |               |      | 0.98      |           | 0.95   | 1.00       |      | 0.95        | 1.00       |      |
| Satd. Flow (prot)        |      | 1787  |               |      | 1794      |           | 1770   | 3496       |      | 1770        | 3484       |      |
| Flt Permitted            |      | 0.81  |               |      | 0.91      |           | 0.95   | 1.00       |      | 0.95        | 1.00       |      |
| Satd. Flow (perm)        |      | 1502  |               |      | 1660      |           | 1770   | 3496       |      | 1770        | 3484       |      |
| Volume (vph)             | 67   | 33    | 4             | 20   | 37        | 9         | 5      | 659        | 45   | 46          | 1098       | 98   |
| Peak-hour factor, PHF    | 0.97 | 0.97  | 0.97          | 0.97 | 0.97      | 0.97      | 0.97   | 0.97       | 0.97 | 0.97        | 0.97       | 0.97 |
| Adj. Flow (vph)          | 69   | 34    | 4             | 21   | 38        | 9         | 5      | 679        | 46   | 47          | 1132       | 101  |
| RTOR Reduction (vph)     | 0    | 3     | 0             | 0    | 8         | 0         | 0      | 4          | 0    | 0           | 4          | C    |
| Lane Group Flow (vph)    | 0    | 104   | 0             | 0    | 60        | 0         | 5      | 721        | 0    | 47          | 1229       | 0    |
| Confl. Peds. (#/hr)      | 10   |       | 10            | 10   |           | 10        |        |            | 10   |             |            | 10   |
| Turn Type                | Perm |       |               | Perm |           |           | Prot   |            |      | Prot        |            |      |
| Protected Phases         |      | 4     |               |      | 4         |           | 5      | 2          |      | 1           | 6          |      |
| Permitted Phases         | 4    |       |               | 4    |           |           |        |            |      |             |            |      |
| Actuated Green, G (s)    |      | 11.0  |               |      | 11.0      |           | 1.1    | 46.7       |      | 4.5         | 50.4       |      |
| Effective Green, g (s)   |      | 11.9  |               |      | 11.9      |           | 1.5    | 48.2       |      | 4.9         | 51.6       |      |
| Actuated g/C Ratio       |      | 0.15  |               |      | 0.15      |           | 0.02   | 0.63       |      | 0.06        | 0.67       |      |
| Clearance Time (s)       |      | 4.9   |               |      | 4.9       |           | 4.4    | 5.5        |      | 4.4         | 5.2        |      |
| Vehicle Extension (s)    |      | 2.0   |               |      | 2.0       |           | 2.0    | 5.4        |      | 2.0         | 5.9        |      |
| Lane Grp Cap (vph)       |      | 232   |               |      | 257       |           | 34     | 2188       |      | 113         | 2335       |      |
| v/s Ratio Prot           |      |       |               |      |           |           | 0.00   | 0.21       |      | c0.03       | c0.35      |      |
| v/s Ratio Perm           |      | c0.07 |               |      | 0.04      |           |        |            |      |             |            |      |
| v/c Ratio                |      | 0.45  |               |      | 0.23      |           | 0.15   | 0.33       |      | 0.42        | 0.53       |      |
| Uniform Delay, d1        |      | 29.6  |               |      | 28.6      |           | 37.1   | 6.8        |      | 34.7        | 6.5        |      |
| Progression Factor       |      | 1.00  |               |      | 1.00      |           | 1.00   | 1.00       |      | 1.04        | 2.11       |      |
| Incremental Delay, d2    |      | 0.5   |               |      | 0.2       |           | 0.7    | 0.4        |      | 0.6         | 0.6        |      |
| Delay (s)                |      | 30.1  |               |      | 28.7      |           | 37.8   | 7.2        |      | 36.7        | 14.2       |      |
| Level of Service         |      | С     |               |      | С         |           | D      | Α          |      | D           | В          |      |
| Approach Delay (s)       |      | 30.1  |               |      | 28.7      |           |        | 7.4        |      |             | 15.1       |      |
| Approach LOS             |      | С     |               |      | С         |           |        | Α          |      |             | В          |      |
| Intersection Summary     |      |       |               |      |           |           |        |            |      |             |            |      |
| HCM Average Control D    | elay |       | 13.7          | H    | ICM Lev   | vel of Se | ervice |            | В    |             |            |      |
| HCM Volume to Capacit    |      |       | 0.52          |      |           |           |        |            |      |             |            |      |
| Actuated Cycle Length (  |      |       | 77.0          | 5    | Sum of le | ost time  | (s)    |            | 12.0 |             |            |      |
| Intersection Capacity Ut |      |       | 60.5%         |      |           | el of Ser |        |            | В    |             |            |      |
| Analysis Period (min)    |      |       | 15            |      |           |           |        |            |      |             |            |      |
| c Critical Lane Group    |      |       |               |      |           |           |        |            |      |             |            |      |

c Critical Lane Group

Queues Synchro 6 Report Page 5

Fehr & Peers Associates, Inc.

HCM Signalized Intersection Capacity Analysis


Synchro 6 Report Page 6

Venter Inst. Site Access Study Exis 101: N Torrey Pines Rd & Torrey Pines Road

Existing With Project Conditions - Left-Turn Inbound and AM PEAK HOUR

|                         | -          | •     | •     | •       | 7       |            |        |
|-------------------------|------------|-------|-------|---------|---------|------------|--------|
| Lane Group              | EBT        | EBR   | WBL   | WBT     | NBL     | NBR        |        |
| Lane Configurations     | <b>^</b> ^ | 7     | ሻሻ    | ተተተ     | ሻሻ      | 77         |        |
| Volume (vph)            | 250        | 82    | 683   | 733     | 213     | 713        |        |
| Turn Type               |            | Perm  | Prot  |         |         | pt+ov      |        |
| Protected Phases        | 2          |       | 1     | 6       | 4       | 4 1        |        |
| Permitted Phases        |            | 2     |       |         |         |            |        |
| Detector Phases         | 2          | 2     | 1     | 6       | 4       | 4 1        |        |
| Minimum Initial (s)     | 10.0       | 10.0  | 4.0   | 10.0    | 4.0     |            |        |
| Minimum Split (s)       | 32.2       | 32.2  | 8.4   | 15.7    | 37.4    |            |        |
| Total Split (s)         | 25.9       | 25.9  | 69.0  | 94.9    | 25.1    | 94.1       |        |
| Total Split (%)         |            |       | 57.5% |         |         | 78.4%      |        |
| Yellow Time (s)         | 4.3        | 4.3   | 3.4   | 4.7     | 3.4     |            |        |
| All-Red Time (s)        | 1.0        | 1.0   | 1.0   | 1.0     | 1.0     |            |        |
| Lead/Lag                | Lag        | Lag   | Lead  |         |         |            |        |
| Lead-Lag Optimize?      |            |       |       |         |         |            |        |
| Recall Mode             | Min        |       | C-Min |         | None    |            |        |
| Act Effct Green (s)     | 18.9       | 18.9  | 64.6  | 87.5    | 24.5    | 93.1       |        |
| Actuated g/C Ratio      | 0.16       | 0.16  | 0.54  | 0.73    | 0.20    | 0.78       |        |
| v/c Ratio               | 0.33       | 0.28  | 0.39  | 0.24    | 0.32    | 0.35       |        |
| Control Delay           | 44.2       | 9.1   | 20.6  | 6.7     | 39.6    | 5.4        |        |
| Queue Delay             | 0.0        | 0.0   | 0.0   | 0.0     | 0.0     | 0.0        |        |
| Total Delay             | 44.2       | 9.1   | 20.6  | 6.7     | 39.6    | 5.4        |        |
| LOS                     | D          | Α     | С     | Α       | D       | Α          |        |
| Approach Delay          | 35.5       |       |       | 13.4    | 13.3    |            |        |
| Approach LOS            | D          |       |       | В       | В       |            |        |
| Intersection Summary    |            |       |       |         |         |            |        |
| Cycle Length: 120       |            |       |       |         |         |            |        |
| Actuated Cycle Length   | : 120      |       |       |         |         |            |        |
| Offset: 50 (42%), Refer | renced to  | phase | 1:WBL | and 6:\ | NBT, St | tart of Ye | llow   |
| Natural Cycle: 90       |            |       |       |         |         |            |        |
| Control Type: Actuated  | d-Coordin  | nated |       |         |         |            |        |
| Maximum v/c Ratio: 0.3  | 39         |       |       |         |         |            |        |
| Intersection Signal Del | ay: 16.1   |       |       | I       | ntersec | tion LOS   | : B    |
| Intersection Capacity L |            | 54.0% |       | 1       | CU Lev  | el of Ser  | vice A |
| Analysis Period (min) 1 |            |       |       |         |         |            |        |
| . ,                     |            |       |       |         |         |            |        |

Splits and Phases: 101: N Torrey Pines Rd & Torrey Pines Road



Timings Synchro 6 Report Page 1

Fehr & Peers Associates, Inc.

Venter Inst. Site Access Study Existing With Project Conditions - Left-Turn Inbound 101: N Torrey Pines Rd & Torrey Pines Road AM PEAK HOUR

|                         | <b>→</b> | $\rightarrow$ | •    | <b>←</b> | 1    | <b>/</b> |
|-------------------------|----------|---------------|------|----------|------|----------|
| Lane Group              | EBT      | EBR           | WBL  | WBT      | NBL  | NBR      |
| Lane Group Flow (vph)   | 266      | 87            | 727  | 780      | 227  | 759      |
| v/c Ratio               | 0.33     | 0.28          | 0.39 | 0.24     | 0.32 | 0.35     |
| Control Delay           | 44.2     | 9.1           | 20.6 | 6.7      | 39.6 | 5.4      |
| Queue Delay             | 0.0      | 0.0           | 0.0  | 0.0      | 0.0  | 0.0      |
| Total Delay             | 44.2     | 9.1           | 20.6 | 6.7      | 39.6 | 5.4      |
| Queue Length 50th (ft)  | 71       | 0             | 175  | 97       | 70   | 65       |
| Queue Length 95th (ft)  | 87       | 42            | 284  | 120      | 104  | 160      |
| Internal Link Dist (ft) | 360      |               |      | 798      | 294  |          |
| Turn Bay Length (ft)    |          | 150           | 340  |          | 200  |          |
| Base Capacity (vph)     | 1036     | 384           | 2087 | 3535     | 815  | 2356     |
| Starvation Cap Reductn  | 0        | 0             | 0    | 0        | 0    | 0        |
| Spillback Cap Reductn   | 0        | 0             | 0    | 0        | 0    | 0        |
| Storage Cap Reductn     | 0        | 0             | 0    | 0        | 0    | 0        |
| Reduced v/c Ratio       | 0.26     | 0.23          | 0.35 | 0.22     | 0.28 | 0.32     |
| Intersection Summary    |          |               |      |          |      |          |

Queues Synchro 6 Report Page 2

Venter Inst. Site Access Study 101: N Torrey Pines Rd & Torrey Pines Road

Existing With Project Conditions - Left-Turn Inbound oad AM PEAK HOUR

|                          | -         | •    | 1     | ←        | 1       | <i>&gt;</i>    |   |      |
|--------------------------|-----------|------|-------|----------|---------|----------------|---|------|
| Movement                 | EBT       | EBR  | WBL   | WBT      | NBL     | NBR            |   |      |
| Lane Configurations      | <b>^</b>  | 7    | ሻሻ    | <b>^</b> | ኝኝ      | 11             |   |      |
| deal Flow (vphpl)        | 1900      | 1900 | 1900  | 1900     | 1900    | 1900           |   |      |
| Total Lost time (s)      | 4.0       | 4.0  | 4.0   | 4.0      | 4.0     | 4.0            |   |      |
| ane Util. Factor         | 0.91      | 1.00 | 0.97  | *0.80    | 0.97    | 0.88           |   |      |
| rpb, ped/bikes           | 1.00      | 0.97 | 1.00  | 1.00     | 1.00    | 1.00           |   |      |
| lpb, ped/bikes           | 1.00      | 1.00 | 1.00  | 1.00     | 1.00    | 1.00           |   |      |
| rt                       | 1.00      | 0.85 | 1.00  | 1.00     | 1.00    | 0.85           |   |      |
| It Protected             | 1.00      | 1.00 | 0.95  | 1.00     | 0.95    | 1.00           |   |      |
| Satd. Flow (prot)        | 5085      | 1544 | 3433  | 4471     | 3433    | 2787           |   |      |
| It Permitted             | 1.00      | 1.00 | 0.95  | 1.00     | 0.95    | 1.00           |   |      |
| Satd. Flow (perm)        | 5085      | 1544 | 3433  | 4471     | 3433    | 2787           |   |      |
| Volume (vph)             | 250       | 82   | 683   | 733      | 213     | 713            |   |      |
| Peak-hour factor, PHF    | 0.94      | 0.94 | 0.94  | 0.94     | 0.94    | 0.94           |   |      |
| Adj. Flow (vph)          | 266       | 87   | 727   | 780      | 227     | 759            |   |      |
| RTOR Reduction (vph)     | 0         | 73   | 0     | 0        | 0       | 0              |   |      |
| ane Group Flow (vph)     | 266       | 14   | 727   | 780      | 227     | 759            |   |      |
| Confl. Peds. (#/hr)      |           | 10   |       |          |         | 10             |   |      |
| Furn Type                |           | Perm | Prot  |          |         | pt+ov          |   |      |
| Protected Phases         | 2         |      | 1     | 6        | 4       | 4 1            |   |      |
| Permitted Phases         |           | 2    |       |          |         |                |   |      |
| Actuated Green, G (s)    | 17.6      | 17.6 | 64.2  | 85.8     | 24.1    | 92.7           |   |      |
| Effective Green, g (s)   | 18.9      | 18.9 | 64.6  | 87.5     | 24.5    | 93.1           |   |      |
| Actuated g/C Ratio       | 0.16      | 0.16 | 0.54  | 0.73     | 0.20    | 0.78           |   |      |
| Clearance Time (s)       | 5.3       | 5.3  | 4.4   | 5.7      | 4.4     |                |   |      |
| /ehicle Extension (s)    | 4.2       | 4.2  | 2.0   | 3.6      | 2.0     |                |   |      |
| Lane Grp Cap (vph)       | 801       | 243  | 1848  | 3260     | 701     | 2162           |   |      |
| v/s Ratio Prot           | c0.05     |      | c0.21 | 0.17     | 0.07    | c0.27          |   |      |
| v/s Ratio Perm           |           | 0.01 |       |          |         |                |   |      |
| v/c Ratio                | 0.33      | 0.06 | 0.39  | 0.24     | 0.32    | 0.35           |   |      |
| Uniform Delay, d1        | 44.9      | 43.0 | 16.2  | 5.3      | 40.7    | 4.1            |   |      |
| Progression Factor       | 1.00      | 1.00 | 1.00  | 1.00     | 1.00    | 1.00           |   |      |
| Incremental Delay, d2    | 0.4       | 0.1  | 0.6   | 0.2      | 0.1     | 0.0            |   |      |
| Delay (s)                | 45.3      | 43.1 | 16.9  | 5.5      | 40.8    | 4.2            |   |      |
| Level of Service         | D         | D    | В     | Α        | D       | Α              |   |      |
| Approach Delay (s)       | 44.8      |      |       | 11.0     | 12.6    |                |   |      |
| Approach LOS             | D         |      |       | В        | В       |                |   |      |
| ntersection Summary      |           |      |       |          |         |                |   |      |
| HCM Average Control D    | elay      |      | 15.7  | H        | ICM Le  | vel of Service | ) | В    |
| HCM Volume to Capacit    |           |      | 0.38  |          |         |                |   |      |
| Actuated Cycle Length (  | s)        |      | 120.0 | S        | um of I | ost time (s)   |   | 12.0 |
| Intersection Capacity Ut | ilization |      | 54.0% | 10       | CU Leve | el of Service  |   | Α    |
| Analysis Period (min)    |           |      | 15    |          |         |                |   |      |
| C Critical Lane Group    |           |      |       |          |         |                |   |      |

HCM Signalized Intersection Capacity Analysis

Synchro 6 Report Page 3

Venter Inst. Site Access Study 102: Glenbrook Way & Torrey Pines Road

Existing With Project Conditions - Left-Turn Inbound
AM PEAK HOUR

|                          | •         | -       | •     | •       | 1       | <b>†</b>   | -       | ţ          |   |
|--------------------------|-----------|---------|-------|---------|---------|------------|---------|------------|---|
| Lane Group               | EBL       | EBT     | WBL   | WBT     | NBL     | NBT        | SBL     | SBT        |   |
| Lane Configurations      |           | 4       |       | 4       | ሻ       | <b>↑</b> ↑ | ă       | <b>↑</b> ↑ | , |
| Volume (vph)             | 58        | 33      | 22    | 38      | 4       | 858        | 8       | 673        |   |
| Turn Type                | Perm      |         | Perm  |         | Prot    |            | Prot    |            |   |
| Protected Phases         |           | 4       |       | 4       | 5       | 2          | 1       | 6          | 5 |
| Permitted Phases         | 4         |         | 4     |         |         |            |         |            |   |
| Detector Phases          | 4         | 4       | 4     | 4       | 5       | 2          | 1       | 6          |   |
| Minimum Initial (s)      | 4.0       | 4.0     | 4.0   | 4.0     | 4.0     | 10.0       | 4.0     | 17.0       |   |
| Minimum Split (s)        | 36.9      | 36.9    | 36.9  | 36.9    | 8.4     | 22.5       | 8.4     | 22.2       |   |
| Total Split (s)          | 33.4      | 33.4    | 33.4  | 33.4    | 19.8    | 55.1       | 19.5    | 54.8       |   |
| Total Split (%)          | 30.9%     | 30.9%   | 30.9% | 30.9%   | 18.3%   | 51.0%      | 18.1%   | 50.7%      | ) |
| Yellow Time (s)          | 3.9       | 3.9     | 3.9   | 3.9     | 3.4     | 4.5        | 3.4     | 4.2        |   |
| All-Red Time (s)         | 1.0       | 1.0     | 1.0   | 1.0     | 1.0     | 1.0        | 1.0     | 1.0        | ) |
| Lead/Lag                 |           |         |       |         | Lead    | Lag        | Lead    | Lag        | J |
| Lead-Lag Optimize?       |           |         |       |         |         |            |         |            |   |
| Recall Mode              | None      | None    | None  | None    |         | C-Min      |         | C-Min      |   |
| Act Effct Green (s)      |           | 14.6    |       | 14.6    | 5.2     | 83.1       | 5.6     | 83.4       |   |
| Actuated g/C Ratio       |           | 0.14    |       | 0.14    | 0.05    | 0.77       | 0.05    | 0.77       |   |
| v/c Ratio                |           | 0.53    |       | 0.38    | 0.05    | 0.37       | 0.14    | 0.29       |   |
| Control Delay            |           | 40.8    |       | 32.6    | 49.0    | 6.3        | 49.0    | 5.5        |   |
| Queue Delay              |           | 0.0     |       | 0.0     | 0.0     | 0.0        | 0.0     | 0.0        |   |
| Total Delay              |           | 40.8    |       | 32.6    | 49.0    | 6.3        | 49.0    | 5.5        |   |
| LOS                      |           | D       |       | С       | D       | Α          | D       | Α          |   |
| Approach Delay           |           | 40.8    |       | 32.6    |         | 6.5        |         | 6.2        |   |
| Approach LOS             |           | D       |       | С       |         | Α          |         | Α          |   |
| Intersection Summary     |           |         |       |         |         |            |         |            |   |
| Cycle Length: 108        |           |         |       |         |         |            |         |            |   |
| Actuated Cycle Length    |           |         |       |         |         |            |         |            |   |
| Offset: 98 (91%), Refer  | renced to | o phase | 2:NBT | and 6:S | BT, Sta | rt of Ye   | llow    |            |   |
| Natural Cycle: 70        |           |         |       |         |         |            |         |            |   |
| Control Type: Actuated   |           | nated   |       |         |         |            |         |            |   |
| Maximum v/c Ratio: 0.5   |           |         |       |         |         |            |         |            |   |
| Intersection Signal Dela |           |         |       |         |         | tion LOS   |         |            |   |
| Intersection Capacity L  |           | 1 47.8% |       | - 1     | CU Lev  | el of Se   | rvice A |            |   |
| Analysis Period (min) 1  | 15        |         |       |         |         |            |         |            |   |
|                          |           |         |       |         |         |            |         |            |   |



Timings Synchro 6 Report Page 4

Venter Inst. Site Access Study
102: Glenbrook Way & Torrey Pines Road

Existing With Project Conditions - Left-Turn Inbound

|                         | -    | <b>←</b> | 4    | <b>†</b> | -    | ţ    |
|-------------------------|------|----------|------|----------|------|------|
| Lane Group              | EBT  | WBT      | NBL  | NBT      | SBL  | SBT  |
| Lane Group Flow (vph)   | 108  | 89       | 4    | 988      | 13   | 778  |
| v/c Ratio               | 0.53 | 0.38     | 0.05 | 0.37     | 0.14 | 0.29 |
| Control Delay           | 40.8 | 32.6     | 49.0 | 6.3      | 49.0 | 5.5  |
| Queue Delay             | 0.0  | 0.0      | 0.0  | 0.0      | 0.0  | 0.0  |
| Total Delay             | 40.8 | 32.6     | 49.0 | 6.3      | 49.0 | 5.5  |
| Queue Length 50th (ft)  | 69   | 47       | 3    | 70       | 9    | 51   |
| Queue Length 95th (ft)  | 104  | 80       | 14   | 267      | 28   | 191  |
| Internal Link Dist (ft) | 200  | 226      |      | 276      |      | 322  |
| Turn Bay Length (ft)    |      |          |      |          | 150  |      |
| Base Capacity (vph)     | 403  | 457      | 259  | 2690     | 254  | 2698 |
| Starvation Cap Reductn  | 0    | 0        | 0    | 0        | 0    | 0    |
| Spillback Cap Reductn   | 0    | 0        | 0    | 0        | 0    | 0    |
| Storage Cap Reductn     | 0    | 0        | 0    | 0        | 0    | 0    |
| Reduced v/c Ratio       | 0.27 | 0.19     | 0.02 | 0.37     | 0.05 | 0.29 |
| Intersection Summary    |      |          |      |          |      |      |

Existing With Project Conditions - Left-Turn Inbound

AM PEAK HOUR

Venter Inst. Site Access Study
102: Glenbrook Way & Torrey Pines Road

|                          | ۶         | <b>→</b> | $\rightarrow$ | •    | <b>←</b> | •         | 4      | <b>†</b>   | <i>&gt;</i> | L    | -     | ļ           |
|--------------------------|-----------|----------|---------------|------|----------|-----------|--------|------------|-------------|------|-------|-------------|
| Movement                 | EBL       | EBT      | EBR           | WBL  | WBT      | WBR       | NBL    | NBT        | NBR         | SBU  | SBL   | SBT         |
| Lane Configurations      |           | 4        |               |      | 4        |           | ሻ      | <b>†</b> } |             |      | ă     | <b>↑</b> îa |
| Ideal Flow (vphpl)       | 1900      | 1900     | 1900          | 1900 | 1900     | 1900      | 1900   | 1900       | 1900        | 1900 | 1900  | 1900        |
| Total Lost time (s)      |           | 4.0      |               |      | 4.0      |           | 4.0    | 4.0        |             |      | 4.0   | 4.0         |
| Lane Util. Factor        |           | 1.00     |               |      | 1.00     |           | 1.00   | 0.95       |             |      | 1.00  | 0.95        |
| Frpb, ped/bikes          |           | 1.00     |               |      | 0.99     |           | 1.00   | 1.00       |             |      | 1.00  | 1.00        |
| Flpb, ped/bikes          |           | 1.00     |               |      | 1.00     |           | 1.00   | 1.00       |             |      | 1.00  | 1.00        |
| Frt                      |           | 0.99     |               |      | 0.96     |           | 1.00   | 0.99       |             |      | 1.00  | 0.99        |
| Flt Protected            |           | 0.97     |               |      | 0.99     |           | 0.95   | 1.00       |             |      | 0.95  | 1.00        |
| Satd. Flow (prot)        |           | 1773     |               |      | 1757     |           | 1770   | 3493       |             |      | 1770  | 3490        |
| Flt Permitted            |           | 0.73     |               |      | 0.91     |           | 0.95   | 1.00       |             |      | 0.95  | 1.00        |
| Satd. Flow (perm)        |           | 1324     |               |      | 1614     |           | 1770   | 3493       |             |      | 1770  | 3490        |
| Volume (vph)             | 58        | 33       | 10            | 22   | 38       | 22        | 4      | 858        | 60          | 4    | 8     | 673         |
| Peak-hour factor, PHF    | 0.93      | 0.93     | 0.93          | 0.93 | 0.93     | 0.93      | 0.93   | 0.93       | 0.93        | 0.95 | 0.93  | 0.93        |
| Adj. Flow (vph)          | 62        | 35       | 11            | 24   | 41       | 24        | 4      | 923        | 65          | 4    | 9     | 724         |
| RTOR Reduction (vph)     | 0         | 4        | 0             | 0    | 15       | 0         | 0      | 2          | 0           | 0    | 0     | 3           |
| Lane Group Flow (vph)    | 0         | 104      | 0             | 0    | 74       | 0         | 4      | 986        | 0           | 0    | 13    | 775         |
| Confl. Peds. (#/hr)      | 10        |          | 10            | 10   |          | 10        |        |            | 10          |      |       |             |
| Turn Type                | Perm      |          |               | Perm |          |           | Prot   |            |             | Prot | Prot  |             |
| Protected Phases         |           | 4        |               |      | 4        |           | 5      | 2          |             | 1    | 1     | 6           |
| Permitted Phases         | 4         |          |               | 4    |          |           |        |            |             |      |       |             |
| Actuated Green, G (s)    |           | 13.7     |               |      | 13.7     |           | 1.1    | 78.1       |             |      | 1.4   | 78.7        |
| Effective Green, g (s)   |           | 14.6     |               |      | 14.6     |           | 1.5    | 79.6       |             |      | 1.8   | 79.9        |
| Actuated g/C Ratio       |           | 0.14     |               |      | 0.14     |           | 0.01   | 0.74       |             |      | 0.02  | 0.74        |
| Clearance Time (s)       |           | 4.9      |               |      | 4.9      |           | 4.4    | 5.5        |             |      | 4.4   | 5.2         |
| Vehicle Extension (s)    |           | 2.0      |               |      | 2.0      |           | 2.0    | 5.4        |             |      | 2.0   | 5.9         |
| Lane Grp Cap (vph)       |           | 179      |               |      | 218      |           | 25     | 2574       |             |      | 30    | 2582        |
| v/s Ratio Prot           |           |          |               |      |          |           | 0.00   | c0.28      |             |      | c0.01 | 0.22        |
| v/s Ratio Perm           |           | c0.08    |               |      | 0.05     |           |        |            |             |      |       |             |
| v/c Ratio                |           | 0.58     |               |      | 0.34     |           | 0.16   | 0.38       |             |      | 0.43  | 0.30        |
| Uniform Delay, d1        |           | 43.8     |               |      | 42.3     |           | 52.6   | 5.2        |             |      | 52.6  | 4.7         |
| Progression Factor       |           | 1.00     |               |      | 1.00     |           | 1.00   | 1.00       |             |      | 1.00  | 1.00        |
| Incremental Delay, d2    |           | 2.8      |               |      | 0.3      |           | 1.1    | 0.4        |             |      | 3.6   | 0.3         |
| Delay (s)                |           | 46.6     |               |      | 42.7     |           | 53.7   | 5.6        |             |      | 56.2  | 5.0         |
| Level of Service         |           | D        |               |      | D        |           | D      | Α          |             |      | Е     | Α           |
| Approach Delay (s)       |           | 46.6     |               |      | 42.7     |           |        | 5.8        |             |      |       | 5.8         |
| Approach LOS             |           | D        |               |      | D        |           |        | Α          |             |      |       | Α           |
| Intersection Summary     |           |          |               |      |          |           |        |            |             |      |       |             |
| HCM Average Control D    | elay      |          | 9.7           | F    | ICM Le   | vel of Se | ervice |            | Α           |      |       |             |
| HCM Volume to Capaci     | ty ratio  |          | 0.41          |      |          |           |        |            |             |      |       |             |
| Actuated Cycle Length (  | (s)       |          | 108.0         | 5    | Sum of I | ost time  | (s)    |            | 12.0        |      |       |             |
| Intersection Capacity Ut | ilization |          | 47.8%         | I    | CU Leve  | el of Ser | vice   |            | Α           |      |       |             |
| Analysis Period (min)    |           |          | 15            |      |          |           |        |            |             |      |       |             |

c Critical Lane Group

Synchro 6 Report Page 5

HCM Signalized Intersection Capacity Analysis

Synchro 6 Report Page 6

Fehr & Peers Associates, Inc.

Queues


Venter Inst. Site Access Study Existing With Project Conditions - Left-Turn Inbound 102: Glenbrook Way & Torrey Pines Road AM PEAK HOUR

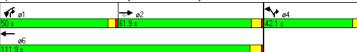


|                         | •    |
|-------------------------|------|
| Movement                | SBR  |
| Land Configurations     |      |
| Ideal Flow (vphpl)      | 1900 |
| Total Lost time (s)     |      |
| Lane Util. Factor       |      |
| Frpb, ped/bikes         |      |
| Flpb, ped/bikes         |      |
| Frt                     |      |
| Flt Protected           |      |
| Satd. Flow (prot)       |      |
| Flt Permitted           |      |
| Satd. Flow (perm)       |      |
| Volume (vph)            | 50   |
| Peak-hour factor, PHF   | 0.93 |
| Adj. Flow (vph)         | 54   |
| RTOR Reduction (vph)    | 0    |
| Lane Group Flow (vph)   | 0    |
| Confl. Peds. (#/hr)     | 10   |
| Turn Type               |      |
| Protected Phases        |      |
| Permitted Phases        |      |
| Actuated Green, G (s)   |      |
| Effective Green, g (s)  |      |
| Actuated g/C Ratio      |      |
| Clearance Time (s)      |      |
| Vehicle Extension (s)   |      |
| Lane Grp Cap (vph)      |      |
| v/s Ratio Prot          |      |
| v/s Ratio Perm          |      |
| v/c Ratio               |      |
| Uniform Delay, d1       |      |
| Progression Factor      |      |
| Incremental Delay, d2   |      |
| Delay (s)               |      |
| Level of Service        |      |
| Approach Delay (s)      |      |
| Approach LOS            |      |
| Intersection Summary    |      |
| into 300tion outfillary |      |

HCM Signalized Intersection Capacity Analysis

Synchro 6 Report Page 7




Venter Inst. Site Access Study Exist 101: N Torrey Pines Rd & Torrey Pines Road

Existing With Project Conditions - Left-Turn Inbound pad PM Peak Hour

|                         | -         | •       | •       | -      | 7      |           |
|-------------------------|-----------|---------|---------|--------|--------|-----------|
| Lane Group              | EBT       | EBR     | WBL     | WBT    | NBL    | NBR       |
| Lane Configurations     | ተተተ       | 7       | ሻሻ      | ተተተ    | ሻሻ     | 77        |
| Volume (vph)            | 985       | 314     | 931     | 538    | 95     | 672       |
| Turn Type               |           | Perm    | Prot    |        |        | pt+ov     |
| Protected Phases        | 2         |         | 1       | 6      | 4      | 4 1       |
| Permitted Phases        |           | 2       |         |        |        |           |
| Detector Phases         | 2         | 2       | 1       | 6      | 4      | 4 1       |
| Minimum Initial (s)     | 10.0      | 10.0    | 4.0     | 10.0   | 4.0    |           |
| Minimum Split (s)       | 32.3      | 32.3    | 8.4     | 15.7   | 37.4   |           |
| Total Split (s)         | 61.9      | 61.9    | 50.0    | 111.9  | 42.1   | 92.1      |
| Total Split (%)         | 40.2%     | 40.2%   | 32.5%   | 72.7%  | 27.3%  | 59.8%     |
| Yellow Time (s)         | 4.3       | 4.3     | 3.4     | 4.7    | 3.4    |           |
| All-Red Time (s)        | 1.0       | 1.0     | 1.0     | 1.0    | 1.0    |           |
| Lead/Lag                | Lag       | Lag     | Lead    |        |        |           |
| Lead-Lag Optimize?      |           |         |         |        |        |           |
| Recall Mode             | C-Min     | C-Min   | Min     | C-Min  | None   |           |
| Act Effct Green (s)     | 57.7      | 57.7    | 52.0    | 113.8  | 32.2   | 88.3      |
| Actuated g/C Ratio      | 0.37      | 0.37    | 0.34    | 0.74   | 0.21   | 0.57      |
| v/c Ratio               | 0.55      | 0.46    | 0.85    | 0.17   | 0.14   | 0.45      |
| Control Delay           | 39.8      | 13.7    | 55.3    | 6.3    | 48.7   | 24.5      |
| Queue Delay             | 1.0       | 0.7     | 0.0     | 0.0    | 0.0    | 0.0       |
| Total Delay             | 40.9      | 14.4    | 55.3    | 6.3    | 48.7   | 24.5      |
| LOS                     | D         | В       | E       | Α      | D      | С         |
| Approach Delay          | 34.5      |         |         | 37.4   | 27.5   |           |
| Approach LOS            | С         |         |         | D      | С      |           |
| Intersection Summary    |           |         |         |        |        |           |
| Cycle Length: 154       |           |         |         |        |        |           |
| Actuated Cycle Length   | : 154     |         |         |        |        |           |
| Offset: 115 (75%), Refe | erenced   | to phas | e 2:EB1 | and 6: | WBT, S | tart of Y |
| Natural Cycle: 100      |           |         |         |        |        |           |
| Control Type: Actuated  | l-Coordir | nated   |         |        |        |           |

Intersection LOS: C
ICU Level of Service C

Splits and Phases: 101: N Torrey Pines Rd & Torrey Pines Road



Timings Synchro 6 Report Page 1

Fehr & Peers Associates, Inc.

Maximum v/c Ratio: 0.85

Intersection Signal Delay: 34.2
Intersection Capacity Utilization 69.2%
Analysis Period (min) 15

Venter Inst. Site Access Study Existing With Project Conditions - Left-Turn Inbound 101: N Torrey Pines Rd & Torrey Pines Road PM Peak Hour

|                         | -    | •    | •    | -    | 1    | ~    |
|-------------------------|------|------|------|------|------|------|
| Lane Group              | EBT  | EBR  | WBL  | WBT  | NBL  | NBR  |
| Lane Group Flow (vph)   | 1048 | 334  | 990  | 572  | 101  | 715  |
| v/c Ratio               | 0.55 | 0.46 | 0.85 | 0.17 | 0.14 | 0.45 |
| Control Delay           | 39.8 | 13.7 | 55.3 | 6.3  | 48.7 | 24.5 |
| Queue Delay             | 1.0  | 0.7  | 0.0  | 0.0  | 0.0  | 0.0  |
| Total Delay             | 40.9 | 14.4 | 55.3 | 6.3  | 48.7 | 24.5 |
| Queue Length 50th (ft)  | 319  | 77   | 462  | 68   | 39   | 219  |
| Queue Length 95th (ft)  | 351  | 164  | 573  | 82   | 73   | 263  |
| Internal Link Dist (ft) | 358  |      |      | 798  | 314  |      |
| Turn Bay Length (ft)    |      | 150  | 340  |      | 200  |      |
| Base Capacity (vph)     | 1995 | 742  | 1163 | 3303 | 849  | 1599 |
| Starvation Cap Reductn  | 637  | 163  | 0    | 0    | 0    | 0    |
| Spillback Cap Reductn   | 0    | 0    | 0    | 0    | 0    | 0    |
| Storage Cap Reductn     | 0    | 0    | 0    | 0    | 0    | 0    |
| Reduced v/c Ratio       | 0.77 | 0.58 | 0.85 | 0.17 | 0.12 | 0.45 |
| Intersection Summary    |      |      |      |      |      |      |

Queues Synchro 6 Report
Page 2

Venter Inst. Site Access Study Exist 101: N Torrey Pines Rd & Torrey Pines Road

Existing With Project Conditions - Left-Turn Inbound pad PM Peak Hour

|                              | -                        | •    | •            | •          | 1       | <i>&gt;</i>    |   |
|------------------------------|--------------------------|------|--------------|------------|---------|----------------|---|
| Movement                     | EBT                      | EBR  | WBL          | WBT        | NBL     | NBR            |   |
| Lane Configurations          | <b>^</b> ^               | 7    | ሻሻ           | <b>^</b> ^ | ሻሻ      | 77             |   |
| Ideal Flow (vphpl)           | 1900                     | 1900 | 1900         | 1900       | 1900    | 1900           |   |
| Total Lost time (s)          | 4.0                      | 4.0  | 4.0          | 4.0        | 4.0     | 4.0            |   |
| Lane Util. Factor            | 0.91                     | 1.00 | 0.97         | *0.80      | 0.97    | 0.88           |   |
| Frpb, ped/bikes              | 1.00                     | 0.97 | 1.00         | 1.00       | 1.00    | 1.00           |   |
| Flpb, ped/bikes              | 1.00                     | 1.00 | 1.00         | 1.00       | 1.00    | 1.00           |   |
| Frt                          | 1.00                     | 0.85 | 1.00         | 1.00       | 1.00    | 0.85           |   |
| Flt Protected                | 1.00                     | 1.00 | 0.95         | 1.00       | 0.95    | 1.00           |   |
| Satd. Flow (prot)            | 5085                     | 1538 | 3433         | 4471       | 3433    | 2787           |   |
| Flt Permitted                | 1.00                     | 1.00 | 0.95         | 1.00       | 0.95    | 1.00           |   |
| Satd. Flow (perm)            | 5085                     | 1538 | 3433         | 4471       | 3433    | 2787           |   |
| Volume (vph)                 | 985                      | 314  | 931          | 538        | 95      | 672            |   |
| Peak-hour factor, PHF        | 0.94                     | 0.94 | 0.94         | 0.94       | 0.94    | 0.94           |   |
| Adj. Flow (vph)              | 1048                     | 334  | 990          | 572        | 101     | 715            |   |
| RTOR Reduction (vph)         | 0                        | 142  | 0            | 0          | 0       | 0              |   |
| Lane Group Flow (vph)        | 1048                     | 192  | 990          | 572        | 101     | 715            |   |
| Confl. Peds. (#/hr)          |                          | 10   |              |            |         | 10             |   |
| Turn Type                    |                          | Perm | Prot         |            |         | pt+ov          |   |
| Protected Phases             | 2                        |      | 1            | 6          | 4       | 4 1            |   |
| Permitted Phases             |                          | 2    |              |            |         |                |   |
| Actuated Green, G (s)        | 56.5                     | 56.5 | 51.6         | 112.1      | 31.8    | 87.8           |   |
| Effective Green, g (s)       | 57.8                     | 57.8 | 52.0         | 113.8      | 32.2    | 88.2           |   |
| Actuated g/C Ratio           | 0.38                     | 0.38 | 0.34         | 0.74       | 0.21    | 0.57           |   |
| Clearance Time (s)           | 5.3                      | 5.3  | 4.4          | 5.7        | 4.4     |                |   |
| Vehicle Extension (s)        | 4.2                      | 4.2  | 2.0          | 3.6        | 2.0     |                |   |
| Lane Grp Cap (vph)           | 1909                     | 577  | 1159         | 3304       | 718     | 1596           |   |
| v/s Ratio Prot               | c0.21                    |      | c0.29        | 0.13       | 0.03    | c0.26          |   |
| v/s Ratio Perm               |                          | 0.12 |              |            |         |                |   |
| v/c Ratio                    | 0.55                     | 0.33 | 0.85         | 0.17       | 0.14    | 0.45           |   |
| Uniform Delay, d1            | 37.8                     | 34.3 | 47.5         | 6.0        | 49.6    | 18.9           |   |
| Progression Factor           | 1.00                     | 1.00 | 1.00         | 1.00       | 0.99    | 1.26           |   |
| Incremental Delay, d2        | 1.1                      | 1.5  | 6.1          | 0.1        | 0.0     | 0.1            |   |
| Delay (s)                    | 39.0                     | 35.9 | 53.5         | 6.1        | 48.9    | 23.9           |   |
| Level of Service             | D                        | D    | D            | Α          | D       | С              |   |
| Approach Delay (s)           | 38.2                     |      |              | 36.2       | 27.0    |                |   |
| Approach LOS                 | D                        |      |              | D          | С       |                |   |
| Intersection Summary         |                          |      |              |            |         |                |   |
|                              | CM Average Control Delay |      |              | H          | ICM Le  | vel of Service | ) |
| HCM Volume to Capacity ratio |                          |      | 34.9<br>0.64 |            |         |                |   |
|                              |                          |      | 154.0        | S          | um of l | ost time (s)   |   |
| Intersection Capacity Ut     |                          |      | 69.2%        |            |         | el of Service  |   |
| Analysis Period (min)        |                          |      | 15           |            |         |                |   |

HCM Signalized Intersection Capacity Analysis

Synchro 6 Report Page 3

Fehr & Peers Associates, Inc.

c Critical Lane Group

Venter Inst. Site Access Study
102: Glenbrook Way & Torrey Pines Road

Existing With Project Conditions - Left-Turn Inbound
PM Peak Hour

|                                    | ٠     | <b>→</b> | •     | <b>←</b> | 4       | †           | <b>&gt;</b> | ļ          |
|------------------------------------|-------|----------|-------|----------|---------|-------------|-------------|------------|
| Lane Group                         | EBL   | EBT      | WBL   | WBT      | NBL     | NBT         | SBL         | SBT        |
| Lane Configurations                |       | 4        |       | 4        | ٦       | <b>∱</b> î> | ă           | <b>↑</b> ↑ |
| Volume (vph)                       | 67    | 33       | 20    | 37       | 5       | 661         | 46          | 1111       |
| Turn Type                          | Perm  |          | Perm  |          | Prot    |             | Prot        |            |
| Protected Phases                   |       | 4        |       | 4        | 5       | 2           | 1           | 6          |
| Permitted Phases                   | 4     |          | 4     |          |         |             |             |            |
| Detector Phases                    | 4     | 4        | 4     | 4        | 5       | 2           | 1           | 6          |
| Minimum Initial (s)                | 4.0   | 4.0      | 4.0   | 4.0      | 4.0     | 10.0        | 4.0         | 17.0       |
| Minimum Split (s)                  | 36.9  | 36.9     | 36.9  | 36.9     | 8.4     | 22.5        | 8.4         | 22.2       |
| Total Split (s)                    | 32.4  | 32.4     | 32.4  | 32.4     | 14.2    | 30.1        | 14.5        | 30.4       |
| Total Split (%)                    | 42.1% | 42.1%    | 42.1% | 42.1%    | 18.4%   | 39.1%       | 18.8%       | 39.5%      |
| Yellow Time (s)                    | 3.9   | 3.9      | 3.9   | 3.9      | 3.4     | 4.5         | 3.4         | 4.2        |
| All-Red Time (s)                   | 1.0   | 1.0      | 1.0   | 1.0      | 1.0     | 1.0         | 1.0         | 1.0        |
| Lead/Lag                           |       |          |       |          | Lead    | Lag         | Lead        | Lag        |
| Lead-Lag Optimize?                 |       |          |       |          |         |             |             |            |
| Recall Mode                        | None  | None     | None  | None     | None    | C-Min       | None        | C-Min      |
| Act Effct Green (s)                |       | 12.8     |       | 12.8     | 5.2     | 48.8        | 7.9         | 56.9       |
| Actuated g/C Ratio                 |       | 0.17     |       | 0.17     | 0.07    | 0.63        | 0.10        | 0.74       |
| v/c Ratio                          |       | 0.43     |       | 0.24     | 0.04    | 0.33        | 0.45        | 0.48       |
| Control Delay                      |       | 26.2     |       | 22.0     | 33.6    | 11.0        | 35.7        | 15.1       |
| Queue Delay                        |       | 0.0      |       | 0.0      | 0.0     | 0.0         | 0.0         | 0.0        |
| Total Delay                        |       | 26.2     |       | 22.0     | 33.6    | 11.0        | 35.7        | 15.1       |
| LOS                                |       | С        |       | С        | С       | В           | D           | В          |
| Approach Delay                     |       | 26.2     |       | 22.0     |         | 11.1        |             | 16.4       |
| Approach LOS                       |       | С        |       | С        |         | В           |             | В          |
| Intersection Summary               |       |          |       |          |         |             |             |            |
| Cycle Length: 77                   |       |          |       |          |         |             |             |            |
| Actuated Cycle Length              | · 77  |          |       |          |         |             |             |            |
| Offset: 76 (99%), Refer            |       | o phase  | 2:NBT | and 6:S  | BT. Sta | rt of Ye    | llow        |            |
| Natural Cycle: 80                  |       |          |       |          | ,       |             |             |            |
| Control Type: Actuated-Coordinated |       |          |       |          |         |             |             |            |
| Maximum v/c Ratio: 0.4             |       |          |       |          |         |             |             |            |
| Intersection Signal Dela           |       |          |       |          | ntersec | tion LOS    | S: B        |            |
| Intersection Capacity L            |       | 62.8%    |       | i        | CU Lev  | el of Se    | rvice B     |            |
| Analysis Period (min) 1            |       |          |       |          |         |             |             |            |



Timings Synchro 6 Report Page 4

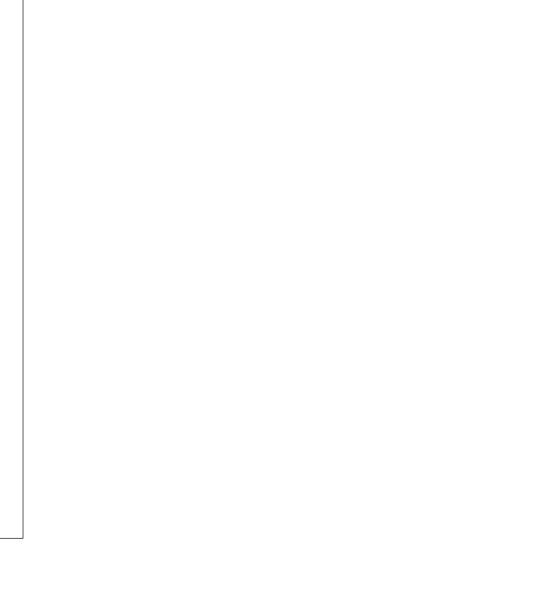
Venter Inst. Site Access Study
102: Glenbrook Way & Torrey Pines Road

Existing With Project Conditions - Left-Turn Inbound PM Peak Hour

|                         | -       | •        | 1     | <b>†</b> | -      | ţ       |
|-------------------------|---------|----------|-------|----------|--------|---------|
| Lane Group              | EBT     | WBT      | NBL   | NBT      | SBL    | SBT     |
| Lane Group Flow (vph)   | 107     | 68       | 5     | 727      | 81     | 1246    |
| v/c Ratio               | 0.43    | 0.24     | 0.04  | 0.33     | 0.45   | 0.48    |
| Control Delay           | 26.2    | 22.0     | 33.6  | 11.0     | 35.7   | 15.1    |
| Queue Delay             | 0.0     | 0.0      | 0.0   | 0.0      | 0.0    | 0.0     |
| Total Delay             | 26.2    | 22.0     | 33.6  | 11.0     | 35.7   | 15.1    |
| Queue Length 50th (ft)  | 47      | 26       | 2     | 79       | 53     | 512     |
| Queue Length 95th (ft)  | 68      | 44       | 12    | 204      | m61    | 702     |
| Internal Link Dist (ft) | 339     | 332      |       | 281      |        | 304     |
| Turn Bay Length (ft)    |         |          |       |          | 150    |         |
| Base Capacity (vph)     | 551     | 623      | 234   | 2219     | 241    | 2580    |
| Starvation Cap Reductn  | 0       | 0        | 0     | 0        | 0      | 0       |
| Spillback Cap Reductn   | 0       | 0        | 0     | 0        | 0      | 0       |
| Storage Cap Reductn     | 0       | 0        | 0     | 0        | 0      | 0       |
| Reduced v/c Ratio       | 0.19    | 0.11     | 0.02  | 0.33     | 0.34   | 0.48    |
| Intersection Summary    |         |          |       |          |        |         |
| m Volume for 95th per   | centile | queue is | meter | ed by up | stream | signal. |

Existing With Project Conditions - Left-Turn Inbound PM Peak Hour Venter Inst. Site Access Study 102: Glenbrook Way & Torrey Pines Road

|                          | ۶       | <b>→</b> | $\rightarrow$ | •       | <b>←</b> | •                      | 4       | <b>†</b>    | <b>/</b> | L    | -     | ţ           |
|--------------------------|---------|----------|---------------|---------|----------|------------------------|---------|-------------|----------|------|-------|-------------|
| Movement                 | EBL     | EBT      | EBR           | WBL     | WBT      | WBR                    | NBL     | NBT         | NBR      | SBU  | SBL   | SBT         |
| Lane Configurations      |         | 4        |               |         | 4        |                        | ሻ       | <b>†</b> 1> |          |      | ă     | <b>↑</b> 1> |
| Ideal Flow (vphpl)       | 1900    | 1900     | 1900          | 1900    | 1900     | 1900                   | 1900    | 1900        | 1900     | 1900 | 1900  | 1900        |
| Total Lost time (s)      |         | 4.0      |               |         | 4.0      |                        | 4.0     | 4.0         |          |      | 4.0   | 4.0         |
| Lane Util. Factor        |         | 1.00     |               |         | 1.00     |                        | 1.00    | 0.95        |          |      | 1.00  | 0.95        |
| Frpb, ped/bikes          |         | 1.00     |               |         | 1.00     |                        | 1.00    | 1.00        |          |      | 1.00  | 1.00        |
| Flpb, ped/bikes          |         | 1.00     |               |         | 1.00     |                        | 1.00    | 1.00        |          |      | 1.00  | 1.00        |
| Frt                      |         | 0.99     |               |         | 0.98     |                        | 1.00    | 0.99        |          |      | 1.00  | 0.99        |
| Flt Protected            |         | 0.97     |               |         | 0.98     |                        | 0.95    | 1.00        |          |      | 0.95  | 1.00        |
| Satd. Flow (prot)        |         | 1787     |               |         | 1794     |                        | 1770    | 3496        |          |      | 1770  | 3484        |
| Flt Permitted            |         | 0.81     |               |         | 0.91     |                        | 0.95    | 1.00        |          |      | 0.95  | 1.00        |
| Satd. Flow (perm)        |         | 1502     |               |         | 1660     |                        | 1770    | 3496        |          |      | 1770  | 3484        |
| Volume (vph)             | 67      | 33       | 4             | 20      | 37       | 9                      | 5       | 661         | 45       | 32   | 46    | 1111        |
| Peak-hour factor, PHF    | 0.97    | 0.97     | 0.97          | 0.97    | 0.97     | 0.97                   | 0.97    | 0.97        | 0.97     | 0.95 | 0.97  | 0.97        |
| Adj. Flow (vph)          | 69      | 34       | 4             | 21      | 38       | 9                      | 5       | 681         | 46       | 34   | 47    | 1145        |
| RTOR Reduction (vph)     | 0       | 3        | 0             | 0       | 8        | 0                      | 0       | 4           | 0        | 0    | 0     | 4           |
| Lane Group Flow (vph)    | 0       | 104      | 0             | 0       | 60       | 0                      | 5       | 723         | 0        | 0    | 81    | 1242        |
| Confl. Peds. (#/hr)      | 10      |          | 10            | 10      |          | 10                     |         |             | 10       |      |       |             |
| Turn Type                | Perm    |          |               | Perm    |          |                        | Prot    |             |          | Prot | Prot  |             |
| Protected Phases         | 1 01111 | 4        |               | 1 01111 | 4        |                        | 5       | 2           |          | 1    | 1     | 6           |
| Permitted Phases         | 4       |          |               | 4       |          |                        | Ū       |             |          |      |       |             |
| Actuated Green, G (s)    |         | 11.0     |               |         | 11.0     |                        | 1.1     | 44.6        |          |      | 6.6   | 50.4        |
| Effective Green, g (s)   |         | 11.9     |               |         | 11.9     |                        | 1.5     | 46.1        |          |      | 7.0   | 51.6        |
| Actuated g/C Ratio       |         | 0.15     |               |         | 0.15     |                        | 0.02    | 0.60        |          |      | 0.09  | 0.67        |
| Clearance Time (s)       |         | 4.9      |               |         | 4.9      |                        | 4.4     | 5.5         |          |      | 4.4   | 5.2         |
| Vehicle Extension (s)    |         | 2.0      |               |         | 2.0      |                        | 2.0     | 5.4         |          |      | 2.0   | 5.9         |
| Lane Grp Cap (vph)       |         | 232      |               |         | 257      |                        | 34      | 2093        |          |      | 161   | 2335        |
| v/s Ratio Prot           |         | 202      |               |         | 201      |                        | 0.00    | 0.21        |          |      | c0.05 | c0.36       |
| v/s Ratio Perm           |         | c0.07    |               |         | 0.04     |                        | 0.00    | 0.21        |          |      | 00.00 | 00.00       |
| v/c Ratio                |         | 0.45     |               |         | 0.23     |                        | 0.15    | 0.35        |          |      | 0.50  | 0.53        |
| Uniform Delay, d1        |         | 29.6     |               |         | 28.6     |                        | 37.1    | 7.8         |          |      | 33.3  | 6.5         |
| Progression Factor       |         | 1.00     |               |         | 1.00     |                        | 1.00    | 1.00        |          |      | 1.04  | 1.97        |
| Incremental Delay, d2    |         | 0.5      |               |         | 0.2      |                        | 0.7     | 0.5         |          |      | 0.6   | 0.6         |
| Delay (s)                |         | 30.1     |               |         | 28.7     |                        | 37.8    | 8.3         |          |      | 35.3  | 13.4        |
| Level of Service         |         | C        |               |         | 20.7     |                        | D D     | Α.          |          |      | D     | В           |
| Approach Delay (s)       |         | 30.1     |               |         | 28.7     |                        |         | 8.5         |          |      |       | 14.8        |
| Approach LOS             |         | C        |               |         | 20.7     |                        |         | Α.          |          |      |       | 14.0<br>B   |
| Intersection Summary     |         |          |               |         |          |                        |         |             |          |      |       |             |
| HCM Average Control D    | )olav   |          | 13.9          |         | 1CM Lo   | vel of Se              | nvico   |             | В        |      |       |             |
| HCM Volume to Capacit    |         |          | 0.50          |         | ICIVI LE | vei oi 3e              | oi vice |             | D        |      |       |             |
| Actuated Cycle Length (  |         |          | 77.0          |         | Sum of I | ost time               | (c)     |             | 8.0      |      |       |             |
| Intersection Capacity Ut |         |          | 62.8%         |         |          | el of Ser              |         |             | 0.0<br>B |      |       |             |
| Analysis Period (min)    | ınzauon |          | 15            | - '     | CO Levi  | 51 UI 3 <del>U</del> I | VICE    |             | В        |      |       |             |
| c Critical Lane Group    |         |          | 10            |         |          |                        |         |             |          |      |       |             |
| c Grilloai Larie Group   |         |          |               |         |          |                        |         |             |          |      |       |             |


Venter Inst. Site Access Study Existing With Project Conditions - Left-Turn Inbound 102: Glenbrook Way & Torrey Pines Road PM Peak Hour



|                                      | ~    |
|--------------------------------------|------|
| Movement                             | SBR  |
| Land Configurations                  |      |
| Ideal Flow (vphpl)                   | 1900 |
| Total Lost time (s)                  |      |
| Lane Util. Factor                    |      |
| Frpb, ped/bikes                      |      |
| Flpb, ped/bikes                      |      |
| Frt                                  |      |
| FIt Protected                        |      |
| Satd. Flow (prot)                    |      |
| Flt Permitted                        |      |
| Satd. Flow (perm)                    |      |
| Volume (vph)                         | 98   |
| Peak-hour factor, PHF                | 0.97 |
| Adj. Flow (vph)                      | 101  |
| RTOR Reduction (vph)                 | 0    |
| Lane Group Flow (vph)                | 0    |
| Confl. Peds. (#/hr)                  | 10   |
| Turn Type                            |      |
| Protected Phases                     |      |
| Permitted Phases                     |      |
| Actuated Green, G (s)                |      |
| Effective Green, g (s)               |      |
| Actuated g/C Ratio                   |      |
| Clearance Time (s)                   |      |
| Vehicle Extension (s)                |      |
| Lane Grp Cap (vph)                   |      |
| v/s Ratio Prot<br>v/s Ratio Perm     |      |
| v/s Ratio Perm<br>v/c Ratio          |      |
|                                      |      |
| Uniform Delay, d1 Progression Factor |      |
| Incremental Delay, d2                |      |
| Delay (s)                            |      |
| Level of Service                     |      |
| Approach Delay (s)                   |      |
| Approach LOS                         |      |
|                                      |      |
| Intersection Summary                 |      |
|                                      |      |

HCM Signalized Intersection Capacity Analysis

Synchro 6 Report Page 7



Venter Inst. Site Access Study Existing With Project Conditions - Right-Turn Inbound Only 101: N Torrey Pines Rd & Torrey Pines Road AM PEAK HOUR

| -        | •                                | •                                      | •                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                             |
|----------|----------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| EBT      | EBR                              | WBL                                    | WBT                                                                                                                                                                                                                                                                                        | NBL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NBR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |
| ተተተ      | 7                                | ሻሻ                                     | ተተተ                                                                                                                                                                                                                                                                                        | ሽኘ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |
| 250      | 82                               | 683                                    | 733                                                                                                                                                                                                                                                                                        | 213                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 713                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |
|          | Perm                             | Prot                                   |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | pt+ov                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             |
| 2        |                                  | 1                                      | 6                                                                                                                                                                                                                                                                                          | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |
|          | 2                                |                                        |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                             |
| _        |                                  | 1                                      | _                                                                                                                                                                                                                                                                                          | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |
|          |                                  |                                        |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                             |
|          |                                  |                                        |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                             |
|          |                                  |                                        |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                             |
|          |                                  |                                        |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 78.4%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             |
| 4.3      | 4.3                              | 3.4                                    | 4.7                                                                                                                                                                                                                                                                                        | 3.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                             |
| 1.0      | 1.0                              | 1.0                                    | 1.0                                                                                                                                                                                                                                                                                        | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                             |
| Lag      | Lag                              | Lead                                   |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                             |
|          |                                  |                                        |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                             |
| Min      | Min                              | C-Min                                  | C-Min                                                                                                                                                                                                                                                                                      | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                             |
| 18.9     | 18.9                             | 64.6                                   | 87.5                                                                                                                                                                                                                                                                                       | 24.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 93.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |
| 0.16     | 0.16                             | 0.54                                   | 0.73                                                                                                                                                                                                                                                                                       | 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |
| 0.33     | 0.28                             | 0.39                                   | 0.24                                                                                                                                                                                                                                                                                       | 0.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |
| 44.2     | 9.1                              | 20.6                                   | 6.7                                                                                                                                                                                                                                                                                        | 40.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |
| 0.0      | 0.0                              | 0.0                                    | 0.0                                                                                                                                                                                                                                                                                        | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |
| 44.2     | 9.1                              | 20.6                                   | 6.7                                                                                                                                                                                                                                                                                        | 40.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |
| D        | Α                                | С                                      | Α                                                                                                                                                                                                                                                                                          | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                             |
| 35.5     |                                  |                                        | 13.4                                                                                                                                                                                                                                                                                       | 13.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                             |
| D        |                                  |                                        | В                                                                                                                                                                                                                                                                                          | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                             |
|          |                                  |                                        |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                             |
|          |                                  |                                        |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                             |
| 120      |                                  |                                        |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                             |
|          | phase                            | 1:WBL                                  | and 6:V                                                                                                                                                                                                                                                                                    | VBT. St                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | art of Ye                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | llow                        |
|          | ,                                |                                        | 5                                                                                                                                                                                                                                                                                          | , 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                             |
| -Coordin | ated                             |                                        |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                             |
| 39       |                                  |                                        |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                             |
|          |                                  |                                        | - 1                                                                                                                                                                                                                                                                                        | ntersec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | tion LOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | : B                         |
|          | 54.3%                            |                                        |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                           |
|          | 2 70                             |                                        |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                             |
|          | 120 enced to Coordin 39 ay: 16.3 | ### ### ### ### ### ### ### ### ### ## | 250 82 683 Perm Prot 2 2 1 10.0 10.0 4.0 32.2 32.2 8.4 25.9 25.9 69.0 21.6% 21.6% 57.5% 4.3 4.3 3.4 1.0 1.0 1.0 1.0 Lag Lag Lead Min Min C-Min 18.9 18.9 64.6 0.16 0.16 0.54 0.33 0.28 0.39 44.2 9.1 20.6 D A C 35.5 D  120 enced to phase 1:WBL -Coordinated 39 ay: 16.3 tilization 54.3% | 100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100 | 250 82 683 733 213 Perm Prot 2 1 6 4 10.0 10.0 4.0 10.0 4.0 32.2 32.2 8.4 15.7 37.4 25.9 25.9 69.0 94.9 25.1 21.6% 21.6% 57.5% 79.1% 20.9% 4.3 4.3 3.4 4.7 3.4 1.0 1.0 1.0 1.0 1.0 1.0 Lag Lag Lead  Min Min C-Min C-Min None 18.9 18.9 64.6 87.5 24.5 0.16 0.16 0.54 0.73 0.20 0.33 0.28 0.39 0.24 0.35 44.2 9.1 20.6 6.7 40.0 0.0 0.0 0.0 0.0 0.0 44.2 9.1 20.6 6.7 40.0 0.0 A C A D 35.5 B 13.4 13.8 D B B  120 enced to phase 1:WBL and 6:WBT, SI | EBT EBR WBL WBT NBL NBR  11 |

Splits and Phases: 101: N Torrey Pines Rd & Torrey Pines Road



Timings Synchro 6 Report Page 1

Fehr & Peers Associates, Inc.

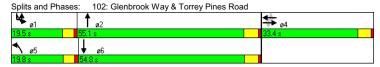
Venter Inst. Site Access Study Existing With Project Conditions - Right-Turn Inbound Only 101: N Torrey Pines Rd & Torrey Pines Road AM PEAK HOUR

|                         | -    | *    | •    | -    | 1    | ~    |
|-------------------------|------|------|------|------|------|------|
| Lane Group              | EBT  | EBR  | WBL  | WBT  | NBL  | NBR  |
| Lane Group Flow (vph)   | 266  | 87   | 727  | 780  | 244  | 759  |
| v/c Ratio               | 0.33 | 0.28 | 0.39 | 0.24 | 0.35 | 0.35 |
| Control Delay           | 44.2 | 9.1  | 20.6 | 6.7  | 40.0 | 5.4  |
| Queue Delay             | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |
| Total Delay             | 44.2 | 9.1  | 20.6 | 6.7  | 40.0 | 5.4  |
| Queue Length 50th (ft)  | 71   | 0    | 175  | 97   | 75   | 65   |
| Queue Length 95th (ft)  | 87   | 42   | 284  | 120  | 111  | 160  |
| Internal Link Dist (ft) | 345  |      |      | 798  | 294  |      |
| Turn Bay Length (ft)    |      | 150  | 340  |      | 200  |      |
| Base Capacity (vph)     | 1036 | 384  | 2087 | 3535 | 815  | 2356 |
| Starvation Cap Reductn  | 0    | 0    | 0    | 0    | 0    | 0    |
| Spillback Cap Reductn   | 0    | 0    | 0    | 0    | 0    | 0    |
| Storage Cap Reductn     | 0    | 0    | 0    | 0    | 0    | 0    |
| Reduced v/c Ratio       | 0.26 | 0.23 | 0.35 | 0.22 | 0.30 | 0.32 |
| Intersection Summary    |      |      |      |      |      |      |

Queues Synchro 6 Report
Page 2

Venter Inst. Site Access Study Existing With Project Conditions - Right-Turn Inbound Only 101: N Torrey Pines Rd & Torrey Pines Road AM PEAK HOUR

|                               | -         | •         | •         | •          | <b>₽</b> I | 1         | -          |  |
|-------------------------------|-----------|-----------|-----------|------------|------------|-----------|------------|--|
| Movement                      | EBT       | EBR       | WBL       | WBT        | NBU        | NBL       | NBR        |  |
| Lane Configurations           | <b>^</b>  | 7         | ሻሻ        | ተተተ        |            | ሽኘ        | 77         |  |
| Ideal Flow (vphpl)            | 1900      | 1900      | 1900      | 1900       | 1900       | 1900      | 1900       |  |
| Total Lost time (s)           | 4.0       | 4.0       | 4.0       | 4.0        |            | 4.0       | 4.0        |  |
| Lane Util. Factor             | 0.91      | 1.00      | 0.97      | *0.80      |            | 0.97      | 0.88       |  |
| Frpb, ped/bikes               | 1.00      | 0.97      | 1.00      | 1.00       |            | 1.00      | 1.00       |  |
| Flpb, ped/bikes               | 1.00      | 1.00      | 1.00      | 1.00       |            | 1.00      | 1.00       |  |
| Frt                           | 1.00      | 0.85      | 1.00      | 1.00       |            | 1.00      | 0.85       |  |
| Flt Protected                 | 1.00      | 1.00      | 0.95      | 1.00       |            | 0.95      | 1.00       |  |
| Satd. Flow (prot)             | 5085      | 1544      | 3433      | 4471       |            | 3433      | 2787       |  |
| Flt Permitted                 | 1.00      | 1.00      | 0.95      | 1.00       |            | 0.95      | 1.00       |  |
| Satd. Flow (perm)             | 5085      | 1544      | 3433      | 4471       |            | 3433      | 2787       |  |
| Volume (vph)                  | 250       | 82        | 683       | 733        | 16         | 213       | 713        |  |
| Peak-hour factor, PHF         | 0.94      | 0.94      | 0.94      | 0.94       | 0.95       | 0.94      | 0.94       |  |
| Adj. Flow (vph)               | 266       | 87        | 727       | 780        | 17         | 227       | 759        |  |
| RTOR Reduction (vph)          | 0         | 73        | 0         | 0          | 0          | 0         | 0          |  |
| Lane Group Flow (vph)         | 266       | 14        | 727       | 780        | 0          | 244       | 759        |  |
| Confl. Peds. (#/hr)           |           | 10        |           |            |            |           | 10         |  |
| Turn Type                     |           | Perm      | Prot      |            | Split      |           | pt+ov      |  |
| Protected Phases              | 2         |           | 1         | 6          | 4          | 4         | 4 1        |  |
| Permitted Phases              |           | 2         |           |            |            |           |            |  |
| Actuated Green, G (s)         | 17.6      | 17.6      | 64.2      | 85.8       |            | 24.1      | 92.7       |  |
| Effective Green, g (s)        | 18.9      | 18.9      | 64.6      | 87.5       |            | 24.5      | 93.1       |  |
| Actuated g/C Ratio            | 0.16      | 0.16      | 0.54      | 0.73       |            | 0.20      | 0.78       |  |
| Clearance Time (s)            | 5.3       | 5.3       | 4.4       | 5.7        |            | 4.4       |            |  |
| Vehicle Extension (s)         | 4.2       | 4.2       | 2.0       | 3.6        |            | 2.0       | 0400       |  |
| Lane Grp Cap (vph)            | 801       | 243       | 1848      | 3260       |            | 701       | 2162       |  |
| v/s Ratio Prot                | c0.05     | 0.04      | c0.21     | 0.17       |            | 0.07      | c0.27      |  |
| v/s Ratio Perm                | 0.22      | 0.01      | 0.20      | 0.24       |            | 0.25      | 0.25       |  |
| v/c Ratio                     | 0.33      | 0.06      | 0.39      | 0.24       |            | 0.35      | 0.35       |  |
| Uniform Delay, d1             | 44.9      | 43.0      | 16.2      | 5.3        |            | 40.9      | 4.1        |  |
| Progression Factor            | 1.00      | 1.00      | 1.00      | 1.00       |            | 1.00      | 1.00       |  |
| Incremental Delay, d2         | 45.3      | 0.1       | 0.6       | 0.2<br>5.5 |            | 0.1       | 0.0<br>4.2 |  |
| Delay (s)<br>Level of Service | 45.3<br>D | 43.1<br>D | 16.9<br>B | 5.5<br>A   |            | 41.0<br>D | 4.2<br>A   |  |
|                               | 44.8      | U         | В         | 11.0       |            | 13.1      | А          |  |
| Approach LOS  Approach LOS    | 44.8<br>D |           |           | 11.0<br>B  |            | 13.1<br>B |            |  |
| Approach LOS                  | U         |           |           | В          |            | В         |            |  |
| Intersection Summary          |           |           |           |            |            |           |            |  |
| HCM Average Control D         |           |           | 15.9      | Н          | ICM Lev    | el of Se  | ervice     |  |
| HCM Volume to Capacit         |           |           | 0.38      |            |            |           |            |  |
| Actuated Cycle Length (       |           |           | 120.0     |            | um of lo   |           |            |  |
| Intersection Capacity Uti     | ilization |           | 54.3%     | IC         | CU Leve    | l of Ser  | rvice      |  |
| Analysis Period (min)         |           |           | 15        |            |            |           |            |  |
| c Critical Lane Group         |           |           |           |            |            |           |            |  |


HCM Signalized Intersection Capacity Analysis

Synchro 6 Report
Page 3

Fehr & Peers Associates, Inc.

Venter Inst. Site Access Study Existing With Project Conditions - Right-Turn Inbound Only 102: Glenbrook Way & Torrey Pines Road AM PEAK HOUR

|                          | •           | <b>→</b> | •     | <b>←</b> | 4       | <b>†</b>   | -       | ļ          |
|--------------------------|-------------|----------|-------|----------|---------|------------|---------|------------|
| Lane Group               | EBL         | EBT      | WBL   | WBT      | NBL     | NBT        | SBL     | SBT        |
| Lane Configurations      |             | 4        |       | 4        | Ť       | <b>†</b> } | ă       | <b>∱</b> } |
| Volume (vph)             | 58          | 33       | 22    | 38       | 4       | 858        | 8       | 673        |
| Turn Type                | Perm        |          | Perm  |          | Prot    |            | Prot    |            |
| Protected Phases         |             | 4        |       | 4        | 5       | 2          | 1       | 6          |
| Permitted Phases         | 4           |          | 4     |          |         |            |         |            |
| Detector Phases          | 4           | 4        | 4     | 4        | 5       | 2          | 1       | 6          |
| Minimum Initial (s)      | 4.0         | 4.0      | 4.0   | 4.0      | 4.0     | 10.0       | 4.0     | 17.0       |
| Minimum Split (s)        | 36.9        | 36.9     | 36.9  | 36.9     | 8.4     | 22.5       | 8.4     | 22.2       |
| Total Split (s)          | 33.4        | 33.4     | 33.4  | 33.4     | 19.8    | 55.1       | 19.5    | 54.8       |
| Total Split (%)          | 30.9%       |          |       |          | 18.3%   |            |         |            |
| Yellow Time (s)          | 3.9         | 3.9      | 3.9   | 3.9      | 3.4     | 4.5        | 3.4     | 4.2        |
| All-Red Time (s)         | 1.0         | 1.0      | 1.0   | 1.0      | 1.0     | 1.0        | 1.0     | 1.0        |
| Lead/Lag                 |             |          |       |          | Lead    | Lag        | Lead    | Lag        |
| Lead-Lag Optimize?       |             |          |       |          |         |            |         |            |
| Recall Mode              | None        | None     | None  | None     |         | C-Min      |         | C-Min      |
| Act Effct Green (s)      |             | 14.6     |       | 14.6     | 5.2     | 83.1       | 5.6     | 83.4       |
| Actuated g/C Ratio       |             | 0.14     |       | 0.14     | 0.05    | 0.77       | 0.05    | 0.77       |
| v/c Ratio                |             | 0.53     |       | 0.38     | 0.05    | 0.37       | 0.14    | 0.29       |
| Control Delay            |             | 40.8     |       | 32.6     | 49.0    | 6.3        | 49.0    | 5.5        |
| Queue Delay              |             | 0.0      |       | 0.0      | 0.0     | 0.0        | 0.0     | 0.0        |
| Total Delay              |             | 40.8     |       | 32.6     | 49.0    | 6.3        | 49.0    | 5.5        |
| LOS                      |             | D        |       | С        | D       | Α          | D       | Α          |
| Approach Delay           |             | 40.8     |       | 32.6     |         | 6.5        |         | 6.2        |
| Approach LOS             |             | D        |       | С        |         | Α          |         | Α          |
| Intersection Summary     |             |          |       |          |         |            |         |            |
| Cycle Length: 108        |             |          |       |          |         |            |         |            |
| Actuated Cycle Length    | : 108       |          |       |          |         |            |         |            |
| Offset: 98 (91%), Refer  | renced to   | phase    | 2:NBT | and 6:S  | BT, Sta | rt of Ye   | llow    |            |
| Natural Cycle: 70        |             | •        |       |          |         |            |         |            |
| Control Type: Actuated   | l-Coordir   | nated    |       |          |         |            |         |            |
| Maximum v/c Ratio: 0.5   | 53          |          |       |          |         |            |         |            |
| Intersection Signal Dela | ay: 9.4     |          |       | - 1      | ntersec | tion LOS   | S: A    |            |
| Intersection Capacity L  | Jtilization | 47.8%    |       | I        | CU Lev  | el of Se   | rvice A |            |
| Analysis Period (min) 1  | 15          |          |       |          |         |            |         |            |
|                          |             |          |       |          |         |            |         |            |



Timings Synchro 6 Report Page 4

Existing With Project Conditions - Right-Turn Inbound Only as Road AM PEAK HOUR Venter Inst. Site Access Study Existing 102: Glenbrook Way & Torrey Pines Road

|                         | -    | •    | 1    | Ť    | <b>&gt;</b> | ţ    |
|-------------------------|------|------|------|------|-------------|------|
| Lane Group              | EBT  | WBT  | NBL  | NBT  | SBL         | SBT  |
| Lane Group Flow (vph)   | 108  | 89   | 4    | 988  | 13          | 778  |
| v/c Ratio               | 0.53 | 0.38 | 0.05 | 0.37 | 0.14        | 0.29 |
| Control Delay           | 40.8 | 32.6 | 49.0 | 6.3  | 49.0        | 5.5  |
| Queue Delay             | 0.0  | 0.0  | 0.0  | 0.0  | 0.0         | 0.0  |
| Total Delay             | 40.8 | 32.6 | 49.0 | 6.3  | 49.0        | 5.5  |
| Queue Length 50th (ft)  | 69   | 47   | 3    | 70   | 9           | 51   |
| Queue Length 95th (ft)  | 104  | 80   | 14   | 267  | 28          | 191  |
| Internal Link Dist (ft) | 200  | 226  |      | 276  |             | 322  |
| Turn Bay Length (ft)    |      |      |      |      | 150         |      |
| Base Capacity (vph)     | 403  | 457  | 259  | 2690 | 254         | 2698 |
| Starvation Cap Reductn  | 0    | 0    | 0    | 0    | 0           | 0    |
| Spillback Cap Reductn   | 0    | 0    | 0    | 0    | 0           | 0    |
| Storage Cap Reductn     | 0    | 0    | 0    | 0    | 0           | 0    |
| Reduced v/c Ratio       | 0.27 | 0.19 | 0.02 | 0.37 | 0.05        | 0.29 |
| Intersection Summary    |      |      |      |      |             |      |

Venter Inst. Site Access Study Existing With Project Conditions - Right-Turn Inbound Only 102: Glenbrook Way & Torrey Pines Road AM PEAK HOUR

|                          | ۶         | -     | $\rightarrow$ | •    | ←         | •         | 1      | <b>†</b>    | ~    | L.   | -     | Ţ           |
|--------------------------|-----------|-------|---------------|------|-----------|-----------|--------|-------------|------|------|-------|-------------|
| Movement                 | EBL       | EBT   | EBR           | WBL  | WBT       | WBR       | NBL    | NBT         | NBR  | SBU  | SBL   | SBT         |
| Lane Configurations      |           | 43-   |               |      | 43-       |           | ች      | <b>↑</b> 1> |      |      | ă     | <b>†</b> 1, |
| Ideal Flow (vphpl)       | 1900      | 1900  | 1900          | 1900 | 1900      | 1900      | 1900   | 1900        | 1900 | 1900 | 1900  | 1900        |
| Total Lost time (s)      |           | 4.0   |               |      | 4.0       |           | 4.0    | 4.0         |      |      | 4.0   | 4.0         |
| Lane Util. Factor        |           | 1.00  |               |      | 1.00      |           | 1.00   | 0.95        |      |      | 1.00  | 0.95        |
| Frpb, ped/bikes          |           | 1.00  |               |      | 0.99      |           | 1.00   | 1.00        |      |      | 1.00  | 1.00        |
| Flpb, ped/bikes          |           | 1.00  |               |      | 1.00      |           | 1.00   | 1.00        |      |      | 1.00  | 1.00        |
| Frt                      |           | 0.99  |               |      | 0.96      |           | 1.00   | 0.99        |      |      | 1.00  | 0.99        |
| Flt Protected            |           | 0.97  |               |      | 0.99      |           | 0.95   | 1.00        |      |      | 0.95  | 1.00        |
| Satd. Flow (prot)        |           | 1773  |               |      | 1757      |           | 1770   | 3493        |      |      | 1770  | 3490        |
| Flt Permitted            |           | 0.73  |               |      | 0.91      |           | 0.95   | 1.00        |      |      | 0.95  | 1.00        |
| Satd. Flow (perm)        |           | 1324  |               |      | 1614      |           | 1770   | 3493        |      |      | 1770  | 3490        |
| Volume (vph)             | 58        | 33    | 10            | 22   | 38        | 22        | 4      | 858         | 60   | 4    | 8     | 673         |
| Peak-hour factor, PHF    | 0.93      | 0.93  | 0.93          | 0.93 | 0.93      | 0.93      | 0.93   | 0.93        | 0.93 | 0.95 | 0.93  | 0.93        |
| Adj. Flow (vph)          | 62        | 35    | 11            | 24   | 41        | 24        | 4      | 923         | 65   | 4    | 9     | 724         |
| RTOR Reduction (vph)     | 0         | 4     | 0             | 0    | 15        | 0         | 0      | 2           | 0    | 0    | 0     | 3           |
| Lane Group Flow (vph)    | 0         | 104   | 0             | 0    | 74        | 0         | 4      | 986         | 0    | 0    | 13    | 775         |
| Confl. Peds. (#/hr)      | 10        |       | 10            | 10   |           | 10        |        |             | 10   |      |       |             |
| Turn Type                | Perm      |       |               | Perm |           |           | Prot   |             |      | Prot | Prot  |             |
| Protected Phases         |           | 4     |               |      | 4         |           | 5      | 2           |      | 1    | 1     | 6           |
| Permitted Phases         | 4         |       |               | 4    |           |           |        |             |      |      |       |             |
| Actuated Green, G (s)    |           | 13.7  |               |      | 13.7      |           | 1.1    | 78.1        |      |      | 1.4   | 78.7        |
| Effective Green, g (s)   |           | 14.6  |               |      | 14.6      |           | 1.5    | 79.6        |      |      | 1.8   | 79.9        |
| Actuated g/C Ratio       |           | 0.14  |               |      | 0.14      |           | 0.01   | 0.74        |      |      | 0.02  | 0.74        |
| Clearance Time (s)       |           | 4.9   |               |      | 4.9       |           | 4.4    | 5.5         |      |      | 4.4   | 5.2         |
| Vehicle Extension (s)    |           | 2.0   |               |      | 2.0       |           | 2.0    | 5.4         |      |      | 2.0   | 5.9         |
| Lane Grp Cap (vph)       |           | 179   |               |      | 218       |           | 25     | 2574        |      |      | 30    | 2582        |
| v/s Ratio Prot           |           |       |               |      |           |           | 0.00   | c0.28       |      |      | c0.01 | 0.22        |
| v/s Ratio Perm           |           | c0.08 |               |      | 0.05      |           |        |             |      |      |       |             |
| v/c Ratio                |           | 0.58  |               |      | 0.34      |           | 0.16   | 0.38        |      |      | 0.43  | 0.30        |
| Uniform Delay, d1        |           | 43.8  |               |      | 42.3      |           | 52.6   | 5.2         |      |      | 52.6  | 4.7         |
| Progression Factor       |           | 1.00  |               |      | 1.00      |           | 1.00   | 1.00        |      |      | 1.00  | 1.00        |
| Incremental Delay, d2    |           | 2.8   |               |      | 0.3       |           | 1.1    | 0.4         |      |      | 3.6   | 0.3         |
| Delay (s)                |           | 46.6  |               |      | 42.7      |           | 53.7   | 5.6         |      |      | 56.2  | 5.0         |
| Level of Service         |           | D     |               |      | D         |           | D      | Α           |      |      | Е     | Α           |
| Approach Delay (s)       |           | 46.6  |               |      | 42.7      |           |        | 5.8         |      |      |       | 5.8         |
| Approach LOS             |           | D     |               |      | D         |           |        | Α           |      |      |       | Α           |
| Intersection Summary     |           |       |               |      |           |           |        |             |      |      |       |             |
| HCM Average Control D    | elay      |       | 9.7           | F    | ICM Lev   | vel of Se | ervice |             | Α    |      |       |             |
| HCM Volume to Capacit    | ty ratio  |       | 0.41          |      |           |           |        |             |      |      |       |             |
| Actuated Cycle Length (  | (s)       |       | 108.0         | 5    | Sum of le | ost time  | (s)    |             | 12.0 |      |       |             |
| Intersection Capacity Ut | ilization |       | 47.8%         | I    | CU Leve   | el of Ser | vice   |             | Α    |      |       |             |
| Analysis Period (min)    |           |       | 15            |      |           |           |        |             |      |      |       |             |
| c Critical Lane Group    |           |       |               |      |           |           |        |             |      |      |       |             |

| Intersection Summary              |       |                      |      |  |
|-----------------------------------|-------|----------------------|------|--|
| HCM Average Control Delay         | 9.7   | HCM Level of Service | Α    |  |
| HCM Volume to Capacity ratio      | 0.41  |                      |      |  |
| Actuated Cycle Length (s)         | 108.0 | Sum of lost time (s) | 12.0 |  |
| Intersection Capacity Utilization | 47.8% | ICU Level of Service | Α    |  |
| Analysis Period (min)             | 15    |                      |      |  |
| c Critical Lane Group             |       |                      |      |  |

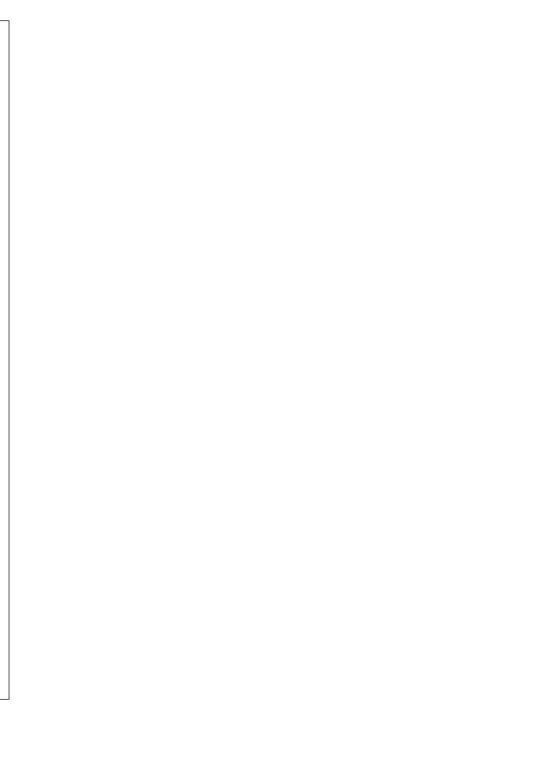
Venter Inst. Site Access Study

Synchro 6 Report Page 5 Queues

Fehr & Peers Associates, Inc.

HCM Signalized Intersection Capacity Analysis

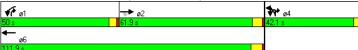
Synchro 6 Report Page 6


Venter Inst. Site Access Study Existing With Project Conditions - Right-Turn Inbound Only 102: Glenbrook Way & Torrey Pines Road AM PEAK HOUR



| Movement               | SBR  |
|------------------------|------|
| Land Configurations    |      |
| Ideal Flow (vphpl)     | 1900 |
| Total Lost time (s)    |      |
| Lane Util. Factor      |      |
| Frpb, ped/bikes        |      |
| Flpb, ped/bikes        |      |
| Frt                    |      |
| Flt Protected          |      |
| Satd. Flow (prot)      |      |
| Flt Permitted          |      |
| Satd. Flow (perm)      |      |
| Volume (vph)           | 50   |
| Peak-hour factor, PHF  | 0.93 |
| Adj. Flow (vph)        | 54   |
| RTOR Reduction (vph)   | 0    |
| Lane Group Flow (vph)  | 0    |
| Confl. Peds. (#/hr)    | 10   |
| Turn Type              |      |
| Protected Phases       |      |
| Permitted Phases       |      |
| Actuated Green, G (s)  |      |
| Effective Green, g (s) |      |
| Actuated g/C Ratio     |      |
| Clearance Time (s)     |      |
| Vehicle Extension (s)  |      |
| Lane Grp Cap (vph)     |      |
| v/s Ratio Prot         |      |
| v/s Ratio Perm         |      |
| v/c Ratio              |      |
| Uniform Delay, d1      |      |
| Progression Factor     |      |
| Incremental Delay, d2  |      |
| Delay (s)              |      |
| Level of Service       |      |
| Approach Delay (s)     |      |
| Approach LOS           |      |
|                        |      |
| Intersection Summary   |      |

HCM Signalized Intersection Capacity Analysis


Synchro 6 Report Page 7



Venter Inst. Site Access Study Existing With Project Conditions - Right-Turn Inbound Only 101: N Torrey Pines Rd & Torrey Pines Road PM Peak Hour

|                         | -         | •       | •       | •      | 1          | -          |        |
|-------------------------|-----------|---------|---------|--------|------------|------------|--------|
| Lane Group              | EBT       | EBR     | WBL     | WBT    | NBL        | NBR        |        |
| Lane Configurations     | ተተተ       | 7       | ሻሻ      | ተተተ    | <u>ሕ</u> ጉ | 77         |        |
| Volume (vph)            | 985       | 314     | 931     | 538    | 95         |            |        |
| Turn Type               |           | Perm    | Prot    |        |            | pt+ov      |        |
| Protected Phases        | 2         |         | 1       | 6      | 4          | 4 1        |        |
| Permitted Phases        |           | 2       |         |        |            |            |        |
| Detector Phases         | 2         | 2       | 1       | 6      | 4          | 4 1        |        |
| Minimum Initial (s)     | 10.0      | 10.0    | 4.0     | 10.0   | 4.0        |            |        |
| Minimum Split (s)       | 32.3      | 32.3    | 8.4     | 15.7   |            |            |        |
| Total Split (s)         | 61.9      | 61.9    | 50.0    | 111.9  | 42.1       | 92.1       |        |
| Total Split (%)         |           |         |         |        | 27.3%      | 59.8%      |        |
| Yellow Time (s)         | 4.3       | 4.3     | 3.4     | 4.7    | 3.4        |            |        |
| All-Red Time (s)        | 1.0       | 1.0     | 1.0     | 1.0    | 1.0        |            |        |
| Lead/Lag                | Lag       | Lag     | Lead    |        |            |            |        |
| Lead-Lag Optimize?      |           |         |         |        |            |            |        |
| Recall Mode             |           | C-Min   |         | C-Min  | None       |            |        |
| Act Effct Green (s)     | 57.7      | 57.7    | 52.0    | 113.8  | 32.2       |            |        |
| Actuated g/C Ratio      | 0.37      | 0.37    | 0.34    | 0.74   | 0.21       | 0.57       |        |
| v/c Ratio               | 0.55      | 0.46    | 0.85    | 0.17   | 0.14       | 0.45       |        |
| Control Delay           | 39.8      | 13.7    | 55.3    | 6.3    | 48.8       | 24.5       |        |
| Queue Delay             | 1.0       | 0.7     | 0.0     | 0.0    | 0.0        | 0.0        |        |
| Total Delay             | 40.9      | 14.4    | 55.3    | 6.3    | 48.8       | 24.5       |        |
| LOS                     | D         | В       | E       | Α      | D          | С          |        |
| Approach Delay          | 34.5      |         |         | 37.4   | 27.5       |            |        |
| Approach LOS            | С         |         |         | D      | С          |            |        |
| Intersection Summary    |           |         |         |        |            |            |        |
| Cycle Length: 154       |           |         |         |        |            |            |        |
| Actuated Cycle Length   | : 154     |         |         |        |            |            |        |
| Offset: 115 (75%), Refe | erenced   | to phas | e 2:EB1 | and 6: | WBT, S     | Start of Y | ellow  |
| Natural Cycle: 100      |           |         |         |        |            |            |        |
| Control Type: Actuated  | l-Coordir | nated   |         |        |            |            |        |
| Maximum v/c Ratio: 0.8  | 85        |         |         |        |            |            |        |
| Intersection Signal Del | ay: 34.2  |         |         |        | ntersec    | tion LOS   | 6: C   |
| Intersection Capacity L |           | 69.2%   |         |        | CU Lev     | el of Ser  | vice C |
| Analysis Period (min) 1 |           |         |         |        |            |            |        |

Splits and Phases: 101: N Torrey Pines Rd & Torrey Pines Road



Timings Synchro 6 Report Page 1

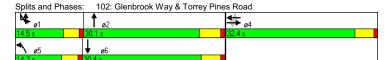
Fehr & Peers Associates, Inc.

Venter Inst. Site Access Study Existing With Project Conditions - Right-Turn Inbound Only 101: N Torrey Pines Rd & Torrey Pines Road PM Peak Hour

|                         | -    | *    | •    | -    | 1    | ~    |
|-------------------------|------|------|------|------|------|------|
| Lane Group              | EBT  | EBR  | WBL  | WBT  | NBL  | NBR  |
| Lane Group Flow (vph)   | 1048 | 334  | 990  | 572  | 103  | 715  |
| v/c Ratio               | 0.55 | 0.46 | 0.85 | 0.17 | 0.14 | 0.45 |
| Control Delay           | 39.8 | 13.7 | 55.3 | 6.3  | 48.8 | 24.5 |
| Queue Delay             | 1.0  | 0.7  | 0.0  | 0.0  | 0.0  | 0.0  |
| Total Delay             | 40.9 | 14.4 | 55.3 | 6.3  | 48.8 | 24.5 |
| Queue Length 50th (ft)  | 319  | 77   | 462  | 68   | 40   | 219  |
| Queue Length 95th (ft)  | 351  | 164  | 573  | 82   | 74   | 263  |
| Internal Link Dist (ft) | 352  |      |      | 798  | 314  |      |
| Turn Bay Length (ft)    |      | 150  | 340  |      | 200  |      |
| Base Capacity (vph)     | 1995 | 742  | 1163 | 3303 | 849  | 1599 |
| Starvation Cap Reductn  | 637  | 163  | 0    | 0    | 0    | 0    |
| Spillback Cap Reductn   | 0    | 0    | 0    | 0    | 0    | 0    |
| Storage Cap Reductn     | 0    | 0    | 0    | 0    | 0    | 0    |
| Reduced v/c Ratio       | 0.77 | 0.58 | 0.85 | 0.17 | 0.12 | 0.45 |
| Intersection Summary    |      |      |      |      |      |      |

Queues Synchro 6 Report
Page 2

Venter Inst. Site Access Study Existing With Project Conditions - Right-Turn Inbound Only 101: N Torrey Pines Rd & Torrey Pines Road PM Peak Hour


|                          | -     | •    | •     | •     | ₹N        | 1        |        |      |  |
|--------------------------|-------|------|-------|-------|-----------|----------|--------|------|--|
| Movement                 | EBT   | EBR  | WBL   | WBT   | NBU       | NBL      | NBR    |      |  |
| Lane Configurations      | ተተተ   | 7    | ሻሻ    | ተተተ   |           | ሽኘ       | 77     |      |  |
| Ideal Flow (vphpl)       | 1900  | 1900 | 1900  | 1900  | 1900      | 1900     | 1900   |      |  |
| Total Lost time (s)      | 4.0   | 4.0  | 4.0   | 4.0   |           | 4.0      | 4.0    |      |  |
| Lane Util. Factor        | 0.91  | 1.00 | 0.97  | *0.80 |           | 0.97     | 0.88   |      |  |
| Frpb, ped/bikes          | 1.00  | 0.97 | 1.00  | 1.00  |           | 1.00     | 1.00   |      |  |
| Flpb, ped/bikes          | 1.00  | 1.00 | 1.00  | 1.00  |           | 1.00     | 1.00   |      |  |
| Frt                      | 1.00  | 0.85 | 1.00  | 1.00  |           | 1.00     | 0.85   |      |  |
| Flt Protected            | 1.00  | 1.00 | 0.95  | 1.00  |           | 0.95     | 1.00   |      |  |
| Satd. Flow (prot)        | 5085  | 1538 | 3433  | 4471  |           | 3433     | 2787   |      |  |
| Flt Permitted            | 1.00  | 1.00 | 0.95  | 1.00  |           | 0.95     | 1.00   |      |  |
| Satd. Flow (perm)        | 5085  | 1538 | 3433  | 4471  |           | 3433     | 2787   |      |  |
| Volume (vph)             | 985   | 314  | 931   | 538   | 2         | 95       | 672    |      |  |
| Peak-hour factor, PHF    | 0.94  | 0.94 | 0.94  | 0.94  | 0.95      | 0.94     | 0.94   |      |  |
| Adj. Flow (vph)          | 1048  | 334  | 990   | 572   | 2         | 101      | 715    |      |  |
| RTOR Reduction (vph)     | 0     | 142  | 0     | 0     | 0         | 0        | 0      |      |  |
| Lane Group Flow (vph)    | 1048  | 192  | 990   | 572   | 0         | 103      | 715    |      |  |
| Confl. Peds. (#/hr)      |       | 10   |       |       |           |          | 10     |      |  |
| Turn Type                |       | Perm | Prot  |       | Split     |          | pt+ov  |      |  |
| Protected Phases         | 2     |      | 1     | 6     | 4         | 4        | 4 1    |      |  |
| Permitted Phases         |       | 2    |       |       |           |          |        |      |  |
| Actuated Green, G (s)    | 56.5  | 56.5 | 51.6  | 112.1 |           | 31.8     | 87.8   |      |  |
| Effective Green, q (s)   | 57.8  | 57.8 | 52.0  | 113.8 |           | 32.2     | 88.2   |      |  |
| Actuated g/C Ratio       | 0.38  | 0.38 | 0.34  | 0.74  |           | 0.21     | 0.57   |      |  |
| Clearance Time (s)       | 5.3   | 5.3  | 4.4   | 5.7   |           | 4.4      |        |      |  |
| Vehicle Extension (s)    | 4.2   | 4.2  | 2.0   | 3.6   |           | 2.0      |        |      |  |
| Lane Grp Cap (vph)       | 1909  | 577  | 1159  | 3304  |           | 718      | 1596   |      |  |
| v/s Ratio Prot           | c0.21 |      | c0.29 | 0.13  |           | 0.03     | c0.26  |      |  |
| v/s Ratio Perm           |       | 0.12 |       |       |           |          |        |      |  |
| v/c Ratio                | 0.55  | 0.33 | 0.85  | 0.17  |           | 0.14     | 0.45   |      |  |
| Uniform Delay, d1        | 37.8  | 34.3 | 47.5  | 6.0   |           | 49.7     | 18.9   |      |  |
| Progression Factor       | 1.00  | 1.00 | 1.00  | 1.00  |           | 0.99     | 1.26   |      |  |
| Incremental Delay, d2    | 1.1   | 1.5  | 6.1   | 0.1   |           | 0.0      | 0.1    |      |  |
| Delay (s)                | 39.0  | 35.9 | 53.5  | 6.1   |           | 49.0     | 23.9   |      |  |
| Level of Service         | D     | D    | D     | A     |           | D        | C      |      |  |
| Approach Delay (s)       | 38.2  |      |       | 36.2  |           | 27.1     |        |      |  |
| Approach LOS             | D     |      |       | D     |           | С        |        |      |  |
| Intersection Summary     |       |      |       |       |           |          |        |      |  |
| HCM Average Control D    | elav  |      | 35.0  | Н     | ICM Lev   | el of S  | ervice | С    |  |
| HCM Volume to Capacit    |       |      | 0.64  |       |           |          |        |      |  |
| Actuated Cycle Length (  |       |      | 154.0 | 5     | Sum of Id | ost time | (s)    | 12.0 |  |
| Intersection Capacity Ut |       |      | 69.2% |       | CU Leve   |          |        | C    |  |
| Analysis Period (min)    |       |      | 15    |       |           | 2. 30    |        |      |  |
| c Critical Lane Group    |       |      |       |       |           |          |        |      |  |

HCM Signalized Intersection Capacity Analysis
Synchro 6 Report
Page 3

Fehr & Peers Associates, Inc.

Venter Inst. Site Access Study Existing With Project Conditions - Right-Turn Inbound Only 102: Glenbrook Way & Torrey Pines Road PM Peak Hour

|                          | •         | <b>→</b> | •     | <b>←</b> | 4       | <b>†</b>    | -       | ļ           |
|--------------------------|-----------|----------|-------|----------|---------|-------------|---------|-------------|
| Lane Group               | EBL       | EBT      | WBL   | WBT      | NBL     | NBT         | SBL     | SBT         |
| Lane Configurations      |           | 4        |       | 44       | ሻ       | <b>↑</b> 1> | ă       | <b>↑</b> 1> |
| Volume (vph)             | 67        | 33       | 20    | 37       | 5       | 661         | 46      | 1111        |
| Turn Type                | Perm      |          | Perm  |          | Prot    |             | Prot    |             |
| Protected Phases         |           | 4        |       | 4        | 5       | 2           | 1       | 6           |
| Permitted Phases         | 4         |          | 4     |          |         |             |         |             |
| Detector Phases          | 4         | 4        | 4     | 4        | 5       | 2           | 1       | 6           |
| Minimum Initial (s)      | 4.0       | 4.0      | 4.0   | 4.0      | 4.0     | 10.0        | 4.0     | 17.0        |
| Minimum Split (s)        | 36.9      | 36.9     | 36.9  | 36.9     | 8.4     | 22.5        | 8.4     | 22.2        |
| Total Split (s)          | 32.4      | 32.4     | 32.4  | 32.4     | 14.2    | 30.1        | 14.5    | 30.4        |
| Total Split (%)          | 42.1%     | 42.1%    |       |          |         |             |         |             |
| Yellow Time (s)          | 3.9       | 3.9      | 3.9   | 3.9      | 3.4     | 4.5         | 3.4     | 4.2         |
| All-Red Time (s)         | 1.0       | 1.0      | 1.0   | 1.0      | 1.0     | 1.0         | 1.0     | 1.0         |
| Lead/Lag                 |           |          |       |          | Lead    | Lag         | Lead    | Lag         |
| Lead-Lag Optimize?       |           |          |       |          |         |             |         |             |
| Recall Mode              | None      | None     | None  |          |         | C-Min       |         |             |
| Act Effct Green (s)      |           | 12.8     |       | 12.8     | 5.2     | 48.8        | 7.9     | 56.9        |
| Actuated g/C Ratio       |           | 0.17     |       | 0.17     | 0.07    | 0.63        | 0.10    | 0.74        |
| v/c Ratio                |           | 0.43     |       | 0.24     | 0.04    | 0.33        |         | 0.48        |
| Control Delay            |           | 26.2     |       | 22.0     | 33.6    | 11.0        | 35.7    | 15.1        |
| Queue Delay              |           | 0.0      |       | 0.0      | 0.0     | 0.0         | 0.0     | 0.0         |
| Total Delay              |           | 26.2     |       | 22.0     | 33.6    | 11.0        | 35.7    | 15.1        |
| LOS                      |           | С        |       | С        | С       | В           | D       | В           |
| Approach Delay           |           | 26.2     |       | 22.0     |         | 11.1        |         | 16.3        |
| Approach LOS             |           | С        |       | С        |         | В           |         | В           |
| Intersection Summary     |           |          |       |          |         |             |         |             |
| Cycle Length: 77         |           |          |       |          |         |             |         |             |
| Actuated Cycle Length:   |           |          |       |          |         |             |         |             |
| Offset: 76 (99%), Refer  | renced to | o phase  | 2:NBT | and 6:S  | BT, Sta | rt of Yel   | llow    |             |
| Natural Cycle: 80        |           |          |       |          |         |             |         |             |
| Control Type: Actuated   |           | nated    |       |          |         |             |         |             |
| Maximum v/c Ratio: 0.4   |           |          |       |          |         |             |         |             |
| Intersection Signal Dela |           |          |       |          |         | tion LOS    |         |             |
| Intersection Capacity U  |           | 62.8%    |       | I        | CU Lev  | el of Se    | rvice B |             |
| Analysis Period (min) 1  | 5         |          |       |          |         |             |         |             |



Timings Synchro 6 Report Page 4

Venter Inst. Site Access Study Existing With Project Conditions - Right-Turn Inbound Only 102: Glenbrook Way & Torrey Pines Road PM Peak Hour

|                         | -       | ←        | 1     | <b>†</b> | -      | ţ       |
|-------------------------|---------|----------|-------|----------|--------|---------|
| Lane Group              | EBT     | WBT      | NBL   | NBT      | SBL    | SBT     |
| Lane Group Flow (vph)   | 107     | 68       | 5     | 727      | 81     | 1246    |
| v/c Ratio               | 0.43    | 0.24     | 0.04  | 0.33     | 0.45   | 0.48    |
| Control Delay           | 26.2    | 22.0     | 33.6  | 11.0     | 35.7   | 15.1    |
| Queue Delay             | 0.0     | 0.0      | 0.0   | 0.0      | 0.0    | 0.0     |
| Total Delay             | 26.2    | 22.0     | 33.6  | 11.0     | 35.7   | 15.1    |
| Queue Length 50th (ft)  | 47      | 26       | 2     | 79       | 52     | 511     |
| Queue Length 95th (ft)  | 68      | 44       | 12    | 204      | m61    | 700     |
| Internal Link Dist (ft) | 339     | 332      |       | 281      |        | 304     |
| Turn Bay Length (ft)    |         |          |       |          | 150    |         |
| Base Capacity (vph)     | 551     | 623      | 234   | 2219     | 241    | 2580    |
| Starvation Cap Reductn  | 0       | 0        | 0     | 0        | 0      | 0       |
| Spillback Cap Reductn   | 0       | 0        | 0     | 0        | 0      | 0       |
| Storage Cap Reductn     | 0       | 0        | 0     | 0        | 0      | 0       |
| Reduced v/c Ratio       | 0.19    | 0.11     | 0.02  | 0.33     | 0.34   | 0.48    |
| Intersection Summary    |         |          |       |          |        |         |
| m Volume for 95th per   | centile | queue is | meter | ed by up | stream | signal. |

Venter Inst. Site Access Study Existing With Project Conditions - Right-Turn Inbound Only 102: Glenbrook Way & Torrey Pines Road PM Peak Hour

|                          | ۶         | -     | •     | •    | <b>←</b>  | •         | 4      | <b>†</b>    | ~    | L    | <b>&gt;</b> | <b>↓</b>   |
|--------------------------|-----------|-------|-------|------|-----------|-----------|--------|-------------|------|------|-------------|------------|
| Movement                 | EBL       | EBT   | EBR   | WBL  | WBT       | WBR       | NBL    | NBT         | NBR  | SBU  | SBL         | SBT        |
| Lane Configurations      |           | 4     |       |      | 4         |           | ሻ      | <b>↑</b> 1> |      |      | ă           | <b>†</b> î |
| Ideal Flow (vphpl)       | 1900      | 1900  | 1900  | 1900 | 1900      | 1900      | 1900   | 1900        | 1900 | 1900 | 1900        | 1900       |
| Total Lost time (s)      |           | 4.0   |       |      | 4.0       |           | 4.0    | 4.0         |      |      | 4.0         | 4.0        |
| Lane Util. Factor        |           | 1.00  |       |      | 1.00      |           | 1.00   | 0.95        |      |      | 1.00        | 0.95       |
| Frpb, ped/bikes          |           | 1.00  |       |      | 1.00      |           | 1.00   | 1.00        |      |      | 1.00        | 1.00       |
| Flpb, ped/bikes          |           | 1.00  |       |      | 1.00      |           | 1.00   | 1.00        |      |      | 1.00        | 1.00       |
| Frt                      |           | 0.99  |       |      | 0.98      |           | 1.00   | 0.99        |      |      | 1.00        | 0.99       |
| Flt Protected            |           | 0.97  |       |      | 0.98      |           | 0.95   | 1.00        |      |      | 0.95        | 1.00       |
| Satd. Flow (prot)        |           | 1787  |       |      | 1794      |           | 1770   | 3496        |      |      | 1770        | 3484       |
| Flt Permitted            |           | 0.81  |       |      | 0.91      |           | 0.95   | 1.00        |      |      | 0.95        | 1.00       |
| Satd. Flow (perm)        |           | 1502  |       |      | 1660      |           | 1770   | 3496        |      |      | 1770        | 3484       |
| Volume (vph)             | 67        | 33    | 4     | 20   | 37        | 9         | 5      | 661         | 45   | 32   | 46          | 1111       |
| Peak-hour factor, PHF    | 0.97      | 0.97  | 0.97  | 0.97 | 0.97      | 0.97      | 0.97   | 0.97        | 0.97 | 0.95 | 0.97        | 0.97       |
| Adj. Flow (vph)          | 69        | 34    | 4     | 21   | 38        | 9         | 5      | 681         | 46   | 34   | 47          | 1145       |
| RTOR Reduction (vph)     | 0         | 3     | 0     | 0    | 8         | 0         | 0      | 4           | 0    | 0    | 0           | 4          |
| Lane Group Flow (vph)    | 0         | 104   | 0     | 0    | 60        | 0         | 5      | 723         | 0    | 0    | 81          | 1242       |
| Confl. Peds. (#/hr)      | 10        |       | 10    | 10   |           | 10        |        |             | 10   |      |             |            |
| Turn Type                | Perm      |       |       | Perm |           |           | Prot   |             |      | Prot | Prot        |            |
| Protected Phases         |           | 4     |       |      | 4         |           | 5      | 2           |      | 1    | 1           | 6          |
| Permitted Phases         | 4         |       |       | 4    |           |           |        |             |      |      |             |            |
| Actuated Green, G (s)    |           | 11.0  |       |      | 11.0      |           | 1.1    | 44.6        |      |      | 6.6         | 50.4       |
| Effective Green, g (s)   |           | 11.9  |       |      | 11.9      |           | 1.5    | 46.1        |      |      | 7.0         | 51.6       |
| Actuated g/C Ratio       |           | 0.15  |       |      | 0.15      |           | 0.02   | 0.60        |      |      | 0.09        | 0.67       |
| Clearance Time (s)       |           | 4.9   |       |      | 4.9       |           | 4.4    | 5.5         |      |      | 4.4         | 5.2        |
| Vehicle Extension (s)    |           | 2.0   |       |      | 2.0       |           | 2.0    | 5.4         |      |      | 2.0         | 5.9        |
| Lane Grp Cap (vph)       |           | 232   |       |      | 257       |           | 34     | 2093        |      |      | 161         | 2335       |
| v/s Ratio Prot           |           |       |       |      |           |           | 0.00   | 0.21        |      |      | c0.05       | c0.36      |
| v/s Ratio Perm           |           | c0.07 |       |      | 0.04      |           | 0.00   | 0.2.        |      |      | 00.00       | 00.00      |
| v/c Ratio                |           | 0.45  |       |      | 0.23      |           | 0.15   | 0.35        |      |      | 0.50        | 0.53       |
| Uniform Delay, d1        |           | 29.6  |       |      | 28.6      |           | 37.1   | 7.8         |      |      | 33.3        | 6.5        |
| Progression Factor       |           | 1.00  |       |      | 1.00      |           | 1.00   | 1.00        |      |      | 1.04        | 1.97       |
| Incremental Delay, d2    |           | 0.5   |       |      | 0.2       |           | 0.7    | 0.5         |      |      | 0.6         | 0.6        |
| Delay (s)                |           | 30.1  |       |      | 28.7      |           | 37.8   | 8.3         |      |      | 35.3        | 13.4       |
| Level of Service         |           | C     |       |      | 20.7<br>C |           | D D    | Α           |      |      | D.5         | В          |
| Approach Delay (s)       |           | 30.1  |       |      | 28.7      |           | D      | 8.5         |      |      | D           | 14.7       |
| Approach LOS             |           | 30.1  |       |      | 20.7<br>C |           |        | Α.5         |      |      |             | 14.7<br>B  |
|                          |           |       |       |      |           |           |        |             |      |      |             |            |
| Intersection Summary     | No.lou    |       | 13.8  |      | ICM L as  | vel of Se | mico   |             | В    |      |             |            |
| HCM Valume to Canasi     |           |       |       |      | ICIVI LE  | vei oi Se | ervice |             | В    |      |             |            |
| HCM Volume to Capacit    |           |       | 0.50  |      | £1        | 4 4!      | /-\    |             | 0.0  |      |             |            |
| Actuated Cycle Length (  |           |       | 77.0  |      |           | ost time  |        |             | 8.0  |      |             |            |
| Intersection Capacity Ut | ilization |       | 62.8% | l'   | LU Leve   | el of Ser | vice   |             | В    |      |             |            |
| Analysis Period (min)    |           |       | 15    |      |           |           |        |             |      |      |             |            |
| c Critical Lane Group    |           |       |       |      |           |           |        |             |      |      |             |            |

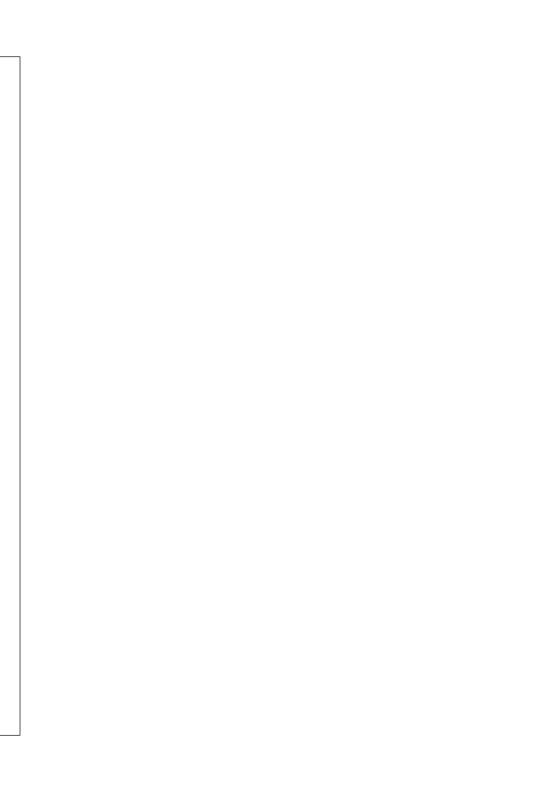
Critical Lane Group

Queues Synchro 6 Report Page 5

Fehr & Peers Associates, Inc.

HCM Signalized Intersection Capacity Analysis

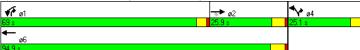
Synchro 6 Report Page 6


Venter Inst. Site Access Study Existing With Project Conditions - Right-Turn Inbound Only 102: Glenbrook Way & Torrey Pines Road PM Peak Hour



| Movement               | SBR  |
|------------------------|------|
| Land Configurations    |      |
| Ideal Flow (vphpl)     | 1900 |
| Total Lost time (s)    |      |
| Lane Util. Factor      |      |
| Frpb, ped/bikes        |      |
| Flpb, ped/bikes        |      |
| Frt                    |      |
| Flt Protected          |      |
| Satd. Flow (prot)      |      |
| Flt Permitted          |      |
| Satd. Flow (perm)      |      |
| Volume (vph)           | 98   |
| Peak-hour factor, PHF  | 0.97 |
| Adj. Flow (vph)        | 101  |
| RTOR Reduction (vph)   | 0    |
| Lane Group Flow (vph)  | 0    |
| Confl. Peds. (#/hr)    | 10   |
| Turn Type              |      |
| Protected Phases       |      |
| Permitted Phases       |      |
| Actuated Green, G (s)  |      |
| Effective Green, g (s) |      |
| Actuated g/C Ratio     |      |
| Clearance Time (s)     |      |
| Vehicle Extension (s)  |      |
| Lane Grp Cap (vph)     |      |
| v/s Ratio Prot         |      |
| v/s Ratio Perm         |      |
| v/c Ratio              |      |
| Uniform Delay, d1      |      |
| Progression Factor     |      |
| Incremental Delay, d2  |      |
| Delay (s)              |      |
| Level of Service       |      |
| Approach Delay (s)     |      |
| Approach LOS           |      |
| Intersection Summary   |      |
| intersection Summary   |      |

HCM Signalized Intersection Capacity Analysis


Synchro 6 Report Page 7



Venter Inst. Site Access Study Existing With Parcels 1-4 Conditions - Left-Turn Inbound 101: N Torrey Pines Rd & Torrey Pines Road AM PEAK HOUR

|                          | -           | •       | 1     | -       | 1        | _          |        |
|--------------------------|-------------|---------|-------|---------|----------|------------|--------|
| Lane Group               | EBT         | EBR     | WBL   | WBT     | NBL      | NBR        |        |
| Lane Configurations      | ተተተ         | 7       | ሻሻ    | ተተተ     | ሻሻ       | 77         |        |
| Volume (vph)             | 259         | 72      | 727   | 742     | 212      | 710        |        |
| Turn Type                |             | Perm    | Prot  |         |          | pt+ov      |        |
| Protected Phases         | 2           |         | 1     | 6       | 4        | 4 1        |        |
| Permitted Phases         |             | 2       |       |         |          |            |        |
| Detector Phases          | 2           | 2       | 1     | 6       | 4        | 4 1        |        |
| Minimum Initial (s)      | 10.0        | 10.0    | 4.0   | 10.0    |          |            |        |
| Minimum Split (s)        | 32.2        | 32.2    | 8.4   | 15.7    |          |            |        |
| Total Split (s)          | 25.9        | 25.9    | 69.0  | 94.9    | 25.1     | 94.1       |        |
| Total Split (%)          |             |         |       |         | 20.9%    | 78.4%      |        |
| Yellow Time (s)          | 4.3         | 4.3     | 3.4   | 4.7     |          |            |        |
| All-Red Time (s)         | 1.0         | 1.0     | 1.0   | 1.0     | 1.0      |            |        |
| Lead/Lag                 | Lag         | Lag     | Lead  |         |          |            |        |
| Lead-Lag Optimize?       |             |         |       |         |          |            |        |
| Recall Mode              | Min         |         | C-Min |         |          |            |        |
| Act Effct Green (s)      | 19.0        | 19.0    | 64.5  | 87.5    | 24.5     | 93.0       |        |
| Actuated g/C Ratio       | 0.16        | 0.16    | 0.54  | 0.73    |          | 0.78       |        |
| v/c Ratio                | 0.34        | 0.25    | 0.42  | 0.24    | 0.32     | 0.35       |        |
| Control Delay            | 44.2        | 9.4     | 21.0  | 6.7     | 39.6     | 5.5        |        |
| Queue Delay              | 0.0         | 0.0     | 0.0   | 0.0     |          | 0.0        |        |
| Total Delay              | 44.2        | 9.4     | 21.0  | 6.7     |          | 5.5        |        |
| LOS                      | D           | Α       | С     | Α       |          | Α          |        |
| Approach Delay           | 36.6        |         |       | 13.8    |          |            |        |
| Approach LOS             | D           |         |       | В       | В        |            |        |
| Intersection Summary     |             |         |       |         |          |            |        |
| Cycle Length: 120        |             |         |       |         |          |            |        |
| Actuated Cycle Length:   | : 120       |         |       |         |          |            |        |
| Offset: 50 (42%), Refer  | renced to   | o phase | 1:WBL | and 6:\ | WBT, St  | tart of Ye | llow   |
| Natural Cycle: 90        |             |         |       |         |          |            |        |
| Control Type: Actuated   | l-Coordir   | nated   |       |         |          |            |        |
| Maximum v/c Ratio: 0.4   | 42          |         |       |         |          |            |        |
| Intersection Signal Dela | ay: 16.4    |         |       | - 1     | Intersec | tion LOS   | : B    |
| Intersection Capacity U  | Itilization | 55.2%   |       |         | ICU Lev  | el of Ser  | vice B |
| Analysis Period (min) 1  | 5           |         |       |         |          |            |        |

Splits and Phases: 101: N Torrey Pines Rd & Torrey Pines Road



Timings Synchro 6 Report Page 1

Fehr & Peers Associates, Inc.

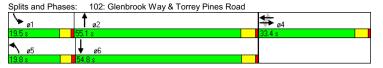
Venter Inst. Site Access Study Existing With Parcels 1-4 Conditions - Left-Turn Inbound 101: N Torrey Pines Rd & Torrey Pines Road AM PEAK HOUR

|                         | -    | •    | •    | <b>—</b> | 1    | ~    |
|-------------------------|------|------|------|----------|------|------|
| Lane Group              | EBT  | EBR  | WBL  | WBT      | NBL  | NBR  |
| Lane Group Flow (vph)   | 276  | 77   | 773  | 789      | 226  | 755  |
| v/c Ratio               | 0.34 | 0.25 | 0.42 | 0.24     | 0.32 | 0.35 |
| Control Delay           | 44.2 | 9.4  | 21.0 | 6.7      | 39.6 | 5.5  |
| Queue Delay             | 0.0  | 0.0  | 0.0  | 0.0      | 0.0  | 0.0  |
| Total Delay             | 44.2 | 9.4  | 21.0 | 6.7      | 39.6 | 5.5  |
| Queue Length 50th (ft)  | 74   | 0    | 190  | 97       | 70   | 65   |
| Queue Length 95th (ft)  | 90   | 39   | 305  | 121      | 103  | 159  |
| Internal Link Dist (ft) | 357  |      |      | 798      | 294  |      |
| Turn Bay Length (ft)    |      | 150  | 340  |          | 200  |      |
| Base Capacity (vph)     | 1036 | 376  | 2085 | 3535     | 815  | 2354 |
| Starvation Cap Reductn  | 0    | 0    | 0    | 0        | 0    | 0    |
| Spillback Cap Reductn   | 0    | 0    | 0    | 0        | 0    | 0    |
| Storage Cap Reductn     | 0    | 0    | 0    | 0        | 0    | 0    |
| Reduced v/c Ratio       | 0.27 | 0.20 | 0.37 | 0.22     | 0.28 | 0.32 |
| Intersection Summary    |      |      |      |          |      |      |

Queues Synchro 6 Report
Page 2

Venter Inst. Site Access Study Existing With Parcels 1-4 Conditions - Left-Turn Inbound 101: N Torrey Pines Rd & Torrey Pines Road AM PEAK HOUR

|                                         | -            | •            | 1            | •           | 1         | <i>&gt;</i>    |      |
|-----------------------------------------|--------------|--------------|--------------|-------------|-----------|----------------|------|
| Movement                                | EBT          | EBR          | WBL          | WBT         | NBL       | NBR            |      |
| Lane Configurations                     | <b>^</b>     | 7            | ሻሻ           | <b>^</b>    | ሻሻ        | 11             |      |
| Ideal Flow (vphpl)                      | 1900         | 1900         | 1900         | 1900        | 1900      | 1900           |      |
| Total Lost time (s)                     | 4.0          | 4.0          | 4.0          | 4.0         | 4.0       | 4.0            |      |
| ane Util. Factor                        | 0.91         | 1.00         | 0.97         | *0.80       | 0.97      | 0.88           |      |
| rpb, ped/bikes                          | 1.00         | 0.97         | 1.00         | 1.00        | 1.00      | 1.00           |      |
| Flpb, ped/bikes                         | 1.00         | 1.00         | 1.00         | 1.00        | 1.00      | 1.00           |      |
| -rt                                     | 1.00         | 0.85         | 1.00         | 1.00        | 1.00      | 0.85           |      |
| Flt Protected                           | 1.00         | 1.00         | 0.95         | 1.00        | 0.95      | 1.00           |      |
| Satd. Flow (prot)                       | 5085         | 1544         | 3433         | 4471        | 3433      | 2787           |      |
| FIt Permitted                           | 1.00         | 1.00         | 0.95         | 1.00        | 0.95      | 1.00           |      |
| Satd. Flow (perm)                       | 5085         | 1544         | 3433         | 4471        | 3433      | 2787           |      |
| Volume (vph)                            | 259          | 72           | 727          | 742         | 212       | 710            |      |
| Peak-hour factor, PHF                   | 0.94         | 0.94         | 0.94         | 0.94        | 0.94      | 0.94           |      |
| Adj. Flow (vph)                         | 276          | 77           | 773          | 789         | 226       | 755            |      |
| RTOR Reduction (vph)                    | 0            | 65           | 0            | 0           | 0         | 0              |      |
| ane Group Flow (vph)                    | 276          | 12           | 773          | 789         | 226       | 755            |      |
| Confl. Peds. (#/hr)                     |              | 10           |              |             |           | 10             |      |
| Turn Type                               |              | Perm         | Prot         |             |           | pt+ov          |      |
| Protected Phases                        | 2            |              | 1            | 6           | 4         | 4 1            |      |
| Permitted Phases                        |              | 2            |              |             |           |                |      |
| ctuated Green, G (s)                    | 17.7         | 17.7         | 64.1         | 85.8        | 24.1      | 92.6           |      |
| Effective Green, g (s)                  | 19.0         | 19.0         | 64.5         | 87.5        | 24.5      | 93.0           |      |
| Actuated g/C Ratio                      | 0.16         | 0.16         | 0.54         | 0.73        | 0.20      | 0.78           |      |
| Clearance Time (s)                      | 5.3          | 5.3          | 4.4          | 5.7         | 4.4       |                |      |
| 'ehicle Extension (s)                   | 4.2          | 4.2          | 2.0          | 3.6         | 2.0       | 0.400          |      |
| ane Grp Cap (vph)                       | 805          | 244          | 1845         | 3260        | 701       | 2160           |      |
| //s Ratio Prot                          | c0.05        | 0.04         | c0.23        | 0.18        | 0.07      | c0.27          |      |
| /s Ratio Perm                           | 0.04         | 0.01         | 0.40         | 0.04        | 0.00      | 0.05           |      |
| //c Ratio                               | 0.34         | 0.05         | 0.42         | 0.24        | 0.32      | 0.35           |      |
| Jniform Delay, d1                       | 44.9<br>1.00 | 42.8<br>1.00 | 16.6<br>1.00 | 5.3<br>1.00 | 40.7      | 4.2<br>1.00    |      |
| Progression Factor ncremental Delay, d2 | 0.4          | 0.1          | 0.7          | 0.2         | 0.1       | 0.0            |      |
| Delay (s)                               | 45.3         | 43.0         | 17.3         | 5.5         | 40.8      | 4.2            |      |
| Level of Service                        | 45.3<br>D    | 43.0<br>D    | 17.3<br>B    | 5.5<br>A    | 40.6<br>D | 4.2<br>A       |      |
| Approach Delay (s)                      | 44.8         | U            | ٥            | 11.3        | 12.6      | ^              |      |
| Approach LOS                            | D            |              |              | В           | 12.0<br>B |                |      |
| Intersection Summary                    |              |              |              |             |           |                |      |
| HCM Average Control D                   | elay         |              | 15.9         | H           | ICM Le    | vel of Service | : В  |
| HCM Volume to Capacit                   |              |              | 0.39         |             |           |                |      |
| Actuated Cycle Length (                 |              |              | 120.0        | S           | um of l   | ost time (s)   | 12.0 |
| Intersection Capacity Ut                | ilization    |              | 55.2%        | IC          | CU Leve   | el of Service  | В    |
| Analysis Period (min)                   |              |              | 15           |             |           |                |      |
| c Critical Lane Group                   |              |              |              |             |           |                |      |


HCM Signalized Intersection Capacity Analysis

Synchro 6 Report
Page 3

Fehr & Peers Associates, Inc.

Venter Inst. Site Access Study Existing With Parcels 1-4 Conditions - Left-Turn Inbound 102: Glenbrook Way & Torrey Pines Road AM PEAK HOUR

|                         | •         | <b>→</b> | •     | <b>←</b> | 4       | <b>†</b>    | -       | ļ           |
|-------------------------|-----------|----------|-------|----------|---------|-------------|---------|-------------|
| Lane Group              | EBL       | EBT      | WBL   | WBT      | NBL     | NBT         | SBL     | SBT         |
| Lane Configurations     |           | 4        |       | 4        | ሻ       | <b>↑</b> 1> | ሻ       | <b>↑</b> 1> |
| Volume (vph)            | 58        | 33       | 22    | 38       | 4       | 889         | 8       | 676         |
| Turn Type               | Perm      |          | Perm  |          | Prot    |             | Prot    |             |
| Protected Phases        |           | 4        |       | 4        | 5       | 2           | 1       | 6           |
| Permitted Phases        | 4         |          | 4     |          |         |             |         |             |
| Detector Phases         | 4         | 4        | 4     | 4        | 5       | 2           | 1       | 6           |
| Minimum Initial (s)     | 4.0       | 4.0      | 4.0   | 4.0      | 4.0     | 10.0        | 4.0     | 17.0        |
| Minimum Split (s)       | 36.9      | 36.9     | 36.9  | 36.9     | 8.4     | 22.5        | 8.4     | 22.2        |
| Total Split (s)         | 33.4      | 33.4     | 33.4  | 33.4     | 19.8    | 55.1        | 19.5    | 54.8        |
| Total Split (%)         | 30.9%     | 30.9%    | 30.9% | 30.9%    | 18.3%   | 51.0%       | 18.1%   | 50.7%       |
| Yellow Time (s)         | 3.9       | 3.9      | 3.9   | 3.9      | 3.4     | 4.5         | 3.4     | 4.2         |
| All-Red Time (s)        | 1.0       | 1.0      | 1.0   | 1.0      | 1.0     | 1.0         | 1.0     | 1.0         |
| Lead/Lag                |           |          |       |          | Lead    | Lag         | Lead    | Lag         |
| Lead-Lag Optimize?      |           |          |       |          |         |             |         |             |
| Recall Mode             | None      | None     | None  | None     |         | C-Min       |         | C-Min       |
| Act Effct Green (s)     |           | 14.6     |       | 14.6     | 5.2     | 83.3        | 5.4     | 83.4        |
| Actuated g/C Ratio      |           | 0.14     |       | 0.14     |         | 0.77        | 0.05    | 0.77        |
| v/c Ratio               |           | 0.53     |       | 0.38     |         | 0.38        | 0.10    | 0.29        |
| Control Delay           |           | 40.8     |       | 32.6     | 49.0    | 6.3         | 49.0    | 5.5         |
| Queue Delay             |           | 0.0      |       | 0.0      | 0.0     | 0.0         | 0.0     | 0.0         |
| Total Delay             |           | 40.8     |       | 32.6     | 49.0    | 6.3         | 49.0    | 5.5         |
| LOS                     |           | D        |       | С        | D       | Α           | D       | Α           |
| Approach Delay          |           | 40.8     |       | 32.6     |         | 6.5         |         | 6.0         |
| Approach LOS            |           | D        |       | С        |         | Α           |         | Α           |
| Intersection Summary    |           |          |       |          |         |             |         |             |
| Cycle Length: 108       |           |          |       |          |         |             |         |             |
| Actuated Cycle Length   |           |          |       |          |         |             |         |             |
| Offset: 98 (91%), Refe  | renced to | o phase  | 2:NBT | and 6:S  | BT, Sta | rt of Ye    | llow    |             |
| Natural Cycle: 70       |           |          |       |          |         |             |         |             |
| Control Type: Actuated  |           | nated    |       |          |         |             |         |             |
| Maximum v/c Ratio: 0.   |           |          |       |          |         |             |         |             |
| Intersection Signal Del |           |          |       |          |         | tion LOS    |         |             |
| Intersection Capacity L |           | 1 48.7%  |       | I        | CU Lev  | el of Se    | rvice A |             |
| Analysis Period (min) 1 | 15        |          |       |          |         |             |         |             |
|                         |           |          |       |          |         |             |         |             |



Timings Synchro 6 Report Page 4

Venter Inst. Site Access Study Existing With Parcels 1-4 Conditions - Left-Turn Inbound 102: Glenbrook Way & Torrey Pines Road AM PEAK HOUR

|                         | -    | •    | 1    | T    | -    | ¥    |
|-------------------------|------|------|------|------|------|------|
| Lane Group              | EBT  | WBT  | NBL  | NBT  | SBL  | SBT  |
| Lane Group Flow (vph)   | 108  | 89   | 4    | 1021 | 9    | 781  |
| v/c Ratio               | 0.53 | 0.38 | 0.05 | 0.38 | 0.10 | 0.29 |
| Control Delay           | 40.8 | 32.6 | 49.0 | 6.3  | 49.0 | 5.5  |
| Queue Delay             | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |
| Total Delay             | 40.8 | 32.6 | 49.0 | 6.3  | 49.0 | 5.5  |
| Queue Length 50th (ft)  | 69   | 47   | 3    | 74   | 6    | 51   |
| Queue Length 95th (ft)  | 104  | 80   | 14   | 275  | 22   | 192  |
| Internal Link Dist (ft) | 200  | 226  |      | 276  |      | 322  |
| Turn Bay Length (ft)    |      |      |      |      | 150  |      |
| Base Capacity (vph)     | 403  | 457  | 259  | 2694 | 254  | 2698 |
| Starvation Cap Reductn  | 0    | 0    | 0    | 0    | 0    | 0    |
| Spillback Cap Reductn   | 0    | 0    | 0    | 0    | 0    | 0    |
| Storage Cap Reductn     | 0    | 0    | 0    | 0    | 0    | 0    |
| Reduced v/c Ratio       | 0.27 | 0.19 | 0.02 | 0.38 | 0.04 | 0.29 |
| Intersection Summary    |      |      |      |      |      |      |

Synchro 6 Report Page 5

Fehr & Peers Associates, Inc.

Queues

Venter Inst. Site Access Study Existing With Parcels 1-4 Conditions - Left-Turn Inbound 102: Glenbrook Way & Torrey Pines Road AM PEAK HOUR

|                          | ۶         | <b>→</b> | •     | •    | <b>←</b> | •         | 4      | <b>†</b> | /    | <b>&gt;</b> | ļ          | 4    |
|--------------------------|-----------|----------|-------|------|----------|-----------|--------|----------|------|-------------|------------|------|
| Movement                 | EBL       | EBT      | EBR   | WBL  | WBT      | WBR       | NBL    | NBT      | NBR  | SBL         | SBT        | SBF  |
| Lane Configurations      |           | 4        |       |      | 4        |           | ሻ      | ħ₽       |      | 7           | <b>↑</b> ↑ |      |
| Ideal Flow (vphpl)       | 1900      | 1900     | 1900  | 1900 | 1900     | 1900      | 1900   | 1900     | 1900 | 1900        | 1900       | 1900 |
| Total Lost time (s)      |           | 4.0      |       |      | 4.0      |           | 4.0    | 4.0      |      | 4.0         | 4.0        |      |
| Lane Util. Factor        |           | 1.00     |       |      | 1.00     |           | 1.00   | 0.95     |      | 1.00        | 0.95       |      |
| Frpb, ped/bikes          |           | 1.00     |       |      | 0.99     |           | 1.00   | 1.00     |      | 1.00        | 1.00       |      |
| Flpb, ped/bikes          |           | 1.00     |       |      | 1.00     |           | 1.00   | 1.00     |      | 1.00        | 1.00       |      |
| Frt                      |           | 0.99     |       |      | 0.96     |           | 1.00   | 0.99     |      | 1.00        | 0.99       |      |
| Flt Protected            |           | 0.97     |       |      | 0.99     |           | 0.95   | 1.00     |      | 0.95        | 1.00       |      |
| Satd. Flow (prot)        |           | 1773     |       |      | 1757     |           | 1770   | 3494     |      | 1770        | 3490       |      |
| Flt Permitted            |           | 0.73     |       |      | 0.91     |           | 0.95   | 1.00     |      | 0.95        | 1.00       |      |
| Satd. Flow (perm)        |           | 1324     |       |      | 1614     |           | 1770   | 3494     |      | 1770        | 3490       |      |
| Volume (vph)             | 58        | 33       | 10    | 22   | 38       | 22        | 4      | 889      | 60   | 8           | 676        | 50   |
| Peak-hour factor, PHF    | 0.93      | 0.93     | 0.93  | 0.93 | 0.93     | 0.93      | 0.93   | 0.93     | 0.93 | 0.93        | 0.93       | 0.93 |
| Adj. Flow (vph)          | 62        | 35       | 11    | 24   | 41       | 24        | 4      | 956      | 65   | 9           | 727        | 54   |
| RTOR Reduction (vph)     | 0         | 4        | 0     | 0    | 15       | 0         | 0      | 2        | 0    | 0           | 3          | C    |
| Lane Group Flow (vph)    | 0         | 104      | 0     | 0    | 74       | 0         | 4      | 1019     | 0    | 9           | 778        | C    |
| Confl. Peds. (#/hr)      | 10        |          | 10    | 10   |          | 10        |        |          | 10   |             |            | 10   |
| Turn Type                | Perm      |          |       | Perm |          |           | Prot   |          |      | Prot        |            |      |
| Protected Phases         |           | 4        |       |      | 4        |           | 5      | 2        |      | 1           | 6          |      |
| Permitted Phases         | 4         |          |       | 4    |          |           |        |          |      |             |            |      |
| Actuated Green, G (s)    |           | 13.7     |       |      | 13.7     |           | 1.1    | 78.3     |      | 1.2         | 78.7       |      |
| Effective Green, g (s)   |           | 14.6     |       |      | 14.6     |           | 1.5    | 79.8     |      | 1.6         | 79.9       |      |
| Actuated g/C Ratio       |           | 0.14     |       |      | 0.14     |           | 0.01   | 0.74     |      | 0.01        | 0.74       |      |
| Clearance Time (s)       |           | 4.9      |       |      | 4.9      |           | 4.4    | 5.5      |      | 4.4         | 5.2        |      |
| Vehicle Extension (s)    |           | 2.0      |       |      | 2.0      |           | 2.0    | 5.4      |      | 2.0         | 5.9        |      |
| Lane Grp Cap (vph)       |           | 179      |       |      | 218      |           | 25     | 2582     |      | 26          | 2582       |      |
| v/s Ratio Prot           |           |          |       |      |          |           | 0.00   | c0.29    |      | c0.01       | 0.22       |      |
| v/s Ratio Perm           |           | c0.08    |       |      | 0.05     |           |        |          |      |             |            |      |
| v/c Ratio                |           | 0.58     |       |      | 0.34     |           | 0.16   | 0.39     |      | 0.35        | 0.30       |      |
| Uniform Delay, d1        |           | 43.8     |       |      | 42.3     |           | 52.6   | 5.2      |      | 52.7        | 4.7        |      |
| Progression Factor       |           | 1.00     |       |      | 1.00     |           | 1.00   | 1.00     |      | 1.00        | 1.00       |      |
| Incremental Delay, d2    |           | 2.8      |       |      | 0.3      |           | 1.1    | 0.5      |      | 2.9         | 0.3        |      |
| Delay (s)                |           | 46.6     |       |      | 42.7     |           | 53.7   | 5.6      |      | 55.6        | 5.0        |      |
| Level of Service         |           | D        |       |      | D        |           | D      | A        |      | Е           | A          |      |
| Approach Delay (s)       |           | 46.6     |       |      | 42.7     |           |        | 5.8      |      |             | 5.6        |      |
| Approach LOS             |           | D        |       |      | D        |           |        | Α        |      |             | Α          |      |
| Intersection Summary     |           |          | 0.0   |      | 10141    | 1.60      |        |          |      |             |            |      |
| HCM Average Control D    |           |          | 9.6   | ŀ    | ICM Le   | vel of Se | ervice |          | Α    |             |            |      |
| HCM Volume to Capacit    |           |          | 0.42  | _    |          |           |        |          |      |             |            |      |
| Actuated Cycle Length (  |           |          | 108.0 |      | Sum of I |           |        |          | 12.0 |             |            |      |
| Intersection Capacity Ut | ılızation |          | 48.7% | l l  | CU Leve  | el of Ser | vice   |          | Α    |             |            |      |
| Analysis Period (min)    |           |          | 15    |      |          |           |        |          |      |             |            |      |
| c Critical Lane Group    |           |          |       |      |          |           |        |          |      |             |            |      |

c Critical Lane Group

HCM Signalized Intersection Capacity Analysis

Synchro 6 Report Page 6

Venter Inst. Site Access Study 101: N Torrey Pines Rd & Torrey Pines Road

Existing With Project Conditions - Left-Turn Inbound pad PM Peak Hour

|                        | -         | •       | •       | _      | 1      |           |
|------------------------|-----------|---------|---------|--------|--------|-----------|
| Lane Group             | EBT       | EBR     | WBL     | WBT    | NBL    | NBR       |
| Lane Configurations    | ተተተ       | 7       | ሻሻ      | ተተተ    | ሻሻ     | 77        |
| Volume (vph)           | 1053      | 314     | 936     | 538    | 85     | 650       |
| Turn Type              |           | Perm    | Prot    |        |        | pt+ov     |
| Protected Phases       | 2         |         | 1       | 6      | 4      | 4 1       |
| Permitted Phases       |           | 2       |         |        |        |           |
| Detector Phases        | 2         | 2       | 1       | 6      | 4      | 4 1       |
| Minimum Initial (s)    | 10.0      | 10.0    | 4.0     | 10.0   | 4.0    |           |
| Minimum Split (s)      | 32.3      | 32.3    | 8.4     | 15.7   | 37.4   |           |
| Total Split (s)        | 61.9      | 61.9    | 50.0    | 111.9  | 42.1   | 92.1      |
| Total Split (%)        | 40.2%     | 40.2%   | 32.5%   | 72.7%  | 27.3%  | 59.8%     |
| Yellow Time (s)        | 4.3       | 4.3     | 3.4     | 4.7    | 3.4    |           |
| All-Red Time (s)       | 1.0       | 1.0     | 1.0     | 1.0    | 1.0    |           |
| Lead/Lag               | Lag       | Lag     | Lead    |        |        |           |
| Lead-Lag Optimize?     |           |         |         |        |        |           |
| Recall Mode            |           | C-Min   |         | C-Min  | None   |           |
| Act Effct Green (s)    | 59.0      | 59.0    | 51.9    | 114.9  | 31.1   | 87.0      |
| Actuated g/C Ratio     | 0.38      | 0.38    | 0.34    | 0.75   | 0.20   | 0.56      |
| v/c Ratio              | 0.58      | 0.46    | 0.86    | 0.17   | 0.13   | 0.44      |
| Control Delay          | 39.6      | 14.8    | 56.2    | 6.0    | 49.4   | 22.0      |
| Queue Delay            | 1.3       | 0.7     | 0.0     | 0.0    | 0.0    | 0.0       |
| Total Delay            | 40.9      | 15.5    | 56.2    | 6.0    | 49.4   | 22.0      |
| LOS                    | D         | В       | Е       | Α      | D      | С         |
| Approach Delay         | 35.1      |         |         | 37.9   | 25.2   |           |
| Approach LOS           | D         |         |         | D      | С      |           |
| Intersection Summary   |           |         |         |        |        |           |
| Cycle Length: 154      |           |         |         |        |        |           |
| Actuated Cycle Length  | : 154     |         |         |        |        |           |
| Offset: 115 (75%), Ref | erenced   | to phas | e 2:EB1 | and 6: | WBT, S | tart of Y |
| Natural Cycle: 100     |           |         |         |        |        |           |
| Control Type: Actuated | d-Coordir | nated   |         |        |        |           |

Maximum v/c Ratio: 0.86

Intersection Signal Delay: 34.2
Intersection Capacity Utilization 69.4%
Analysis Period (min) 15

Intersection LOS: C ICU Level of Service C

Splits and Phases: 101: N Torrey Pines Rd & Torrey Pines Road



Timings Synchro 6 Report Page 1

Fehr & Peers Associates, Inc.

Existing With Project Conditions - Left-Turn Inbound PM Peak Hour Venter Inst. Site Access Study 101: N Torrey Pines Rd & Torrey Pines Road

|                         | -    | •    | •    | <b>—</b> | 1    | ~    |
|-------------------------|------|------|------|----------|------|------|
| Lane Group              | EBT  | EBR  | WBL  | WBT      | NBL  | NBR  |
| Lane Group Flow (vph)   | 1120 | 334  | 996  | 572      | 90   | 691  |
| v/c Ratio               | 0.58 | 0.46 | 0.86 | 0.17     | 0.13 | 0.44 |
| Control Delay           | 39.6 | 14.8 | 56.2 | 6.0      | 49.4 | 22.0 |
| Queue Delay             | 1.3  | 0.7  | 0.0  | 0.0      | 0.0  | 0.0  |
| Total Delay             | 40.9 | 15.5 | 56.2 | 6.0      | 49.4 | 22.0 |
| Queue Length 50th (ft)  | 347  | 90   | 463  | 67       | 35   | 166  |
| Queue Length 95th (ft)  | 378  | 176  | 580  | 82       | 64   | 247  |
| Internal Link Dist (ft) | 353  |      |      | 798      | 314  |      |
| Turn Bay Length (ft)    |      | 150  | 340  |          | 200  |      |
| Base Capacity (vph)     | 2008 | 737  | 1157 | 3335     | 849  | 1575 |
| Starvation Cap Reductn  | 626  | 163  | 0    | 0        | 0    | 0    |
| Spillback Cap Reductn   | 0    | 0    | 0    | 0        | 0    | 0    |
| Storage Cap Reductn     | 0    | 0    | 0    | 0        | 0    | 0    |
| Reduced v/c Ratio       | 0.81 | 0.58 | 0.86 | 0.17     | 0.11 | 0.44 |
| Intersection Summary    |      |      |      |          |      |      |

Queues Synchro 6 Report Page 2

Venter Inst. Site Access Study Exist 101: N Torrey Pines Rd & Torrey Pines Road

Existing With Project Conditions - Left-Turn Inbound oad PM Peak Hour

| -                                 | • 🔻    | •     | ←          | 1       | <b>*</b>       |  |
|-----------------------------------|--------|-------|------------|---------|----------------|--|
| Movement EB1                      | r ebr  | WBL   | WBT        | NBL     | NBR            |  |
| Lane Configurations **            | * *    | ኝኝ    | <b>^</b> ^ | ሻሻ      | 77             |  |
| Ideal Flow (vphpl) 1900           |        | 1900  | 1900       | 1900    | 1900           |  |
| Total Lost time (s) 4.0           | 4.0    | 4.0   | 4.0        | 4.0     | 4.0            |  |
| Lane Util. Factor 0.9             | 1.00   | 0.97  | *0.80      | 0.97    | 0.88           |  |
| Frpb, ped/bikes 1.00              | 0.97   | 1.00  | 1.00       | 1.00    | 1.00           |  |
| Flpb, ped/bikes 1.00              | 1.00   | 1.00  | 1.00       | 1.00    | 1.00           |  |
| Frt 1.00                          | 0.85   | 1.00  | 1.00       | 1.00    | 0.85           |  |
| Flt Protected 1.00                | 1.00   | 0.95  | 1.00       | 0.95    | 1.00           |  |
| Satd. Flow (prot) 5085            | 5 1538 | 3433  | 4471       | 3433    | 2787           |  |
| Flt Permitted 1.00                | 1.00   | 0.95  | 1.00       | 0.95    | 1.00           |  |
| Satd. Flow (perm) 5085            | 5 1538 | 3433  | 4471       | 3433    | 2787           |  |
| Volume (vph) 1053                 | 314    | 936   | 538        | 85      | 650            |  |
| Peak-hour factor, PHF 0.94        | 1 0.94 | 0.94  | 0.94       | 0.94    | 0.94           |  |
| Adj. Flow (vph) 1120              | 334    | 996   | 572        | 90      | 691            |  |
| RTOR Reduction (vph)              | 132    | 0     | 0          | 0       | 0              |  |
| Lane Group Flow (vph) 1120        | 202    | 996   | 572        | 90      | 691            |  |
| Confl. Peds. (#/hr)               | 10     |       |            |         | 10             |  |
| Turn Type                         | Perm   | Prot  |            |         | pt+ov          |  |
| Protected Phases                  | 2      | 1     | 6          | 4       | 4 1            |  |
| Permitted Phases                  | 2      |       |            |         |                |  |
| Actuated Green, G (s) 57.3        | 7 57.7 | 51.5  | 113.2      | 30.7    | 86.6           |  |
| Effective Green, g (s) 59.0       | 59.0   | 51.9  | 114.9      | 31.1    | 87.0           |  |
| Actuated g/C Ratio 0.38           | 0.38   | 0.34  | 0.75       | 0.20    | 0.56           |  |
| Clearance Time (s) 5.3            | 5.3    | 4.4   | 5.7        | 4.4     |                |  |
| Vehicle Extension (s) 4.2         | 2 4.2  | 2.0   | 3.6        | 2.0     |                |  |
| Lane Grp Cap (vph) 1948           | 3 589  | 1157  | 3336       | 693     | 1574           |  |
| v/s Ratio Prot c0.22              | 2      | c0.29 | 0.13       | 0.03    | c0.25          |  |
| v/s Ratio Perm                    | 0.13   |       |            |         |                |  |
| v/c Ratio 0.5                     | 7 0.34 | 0.86  | 0.17       | 0.13    | 0.44           |  |
| Uniform Delay, d1 37.6            | 33.7   | 47.7  | 5.7        | 50.4    | 19.4           |  |
| Progression Factor 1.00           | 1.00   | 1.00  | 1.00       | 0.99    | 1.10           |  |
| Incremental Delay, d2 1.2         |        | 6.5   | 0.1        | 0.0     | 0.1            |  |
| Delay (s) 38.8                    | 35.3   | 54.2  | 5.8        | 50.0    | 21.4           |  |
| Level of Service                  |        | D     | Α          | D       | С              |  |
| Approach Delay (s) 38.0           | )      |       | 36.5       | 24.7    |                |  |
| Approach LOS [                    | )      |       | D          | С       |                |  |
| Intersection Summary              |        |       |            |         |                |  |
| HCM Average Control Delay         |        | 34.7  | F          | ICM Le  | vel of Service |  |
| HCM Volume to Capacity ratio      | )      | 0.65  |            | 20      | 2. 22. 1100    |  |
| Actuated Cycle Length (s)         |        | 154.0 | S          | um of l | ost time (s)   |  |
| Intersection Capacity Utilization | n      | 69.4% |            |         | el of Service  |  |
| Analysis Period (min)             |        | 15    |            |         |                |  |

c Critical Lane Group

HCM Signalized Intersection Capacity Analysis

Synchro 6 Report Page 3

Existing With Project Conditions - Left-Turn Inbound
PM Peak Hour Venter Inst. Site Access Study
102: Glenbrook Way & Torrey Pines Road

|                         | •         | <b>→</b> | •     | <b>←</b> | 4       | <b>†</b>    | <b>&gt;</b> | ļ     |
|-------------------------|-----------|----------|-------|----------|---------|-------------|-------------|-------|
| Lane Group              | EBL       | EBT      | WBL   | WBT      | NBL     | NBT         | SBL         | SBT   |
| Lane Configurations     |           | 4        |       | 4        | ٦       | <b>†</b> î> | ሻ           | ħ₽    |
| Volume (vph)            | 67        | 33       | 20    | 37       | 5       | 664         | 46          | 1138  |
| Turn Type               | Perm      |          | Perm  |          | Prot    |             | Prot        |       |
| Protected Phases        |           | 4        |       | 4        | 5       | 2           | 1           | 6     |
| Permitted Phases        | 4         |          | 4     |          |         |             |             |       |
| Detector Phases         | 4         | 4        | 4     | 4        | 5       | 2           | 1           | 6     |
| Minimum Initial (s)     | 4.0       | 4.0      | 4.0   | 4.0      | 4.0     | 10.0        | 4.0         | 17.0  |
| Minimum Split (s)       | 36.9      | 36.9     | 36.9  | 36.9     | 8.4     | 22.5        | 8.4         | 22.2  |
| Total Split (s)         | 32.4      | 32.4     | 32.4  | 32.4     | 14.2    | 30.1        | 14.5        | 30.4  |
| Total Split (%)         | 42.1%     |          |       |          |         | 39.1%       |             | 39.5% |
| Yellow Time (s)         | 3.9       | 3.9      | 3.9   | 3.9      | 3.4     | 4.5         | 3.4         | 4.2   |
| All-Red Time (s)        | 1.0       | 1.0      | 1.0   | 1.0      | 1.0     | 1.0         | 1.0         | 1.0   |
| Lead/Lag                |           |          |       |          | Lead    | Lag         | Lead        | Lag   |
| Lead-Lag Optimize?      |           |          |       |          |         |             |             |       |
| Recall Mode             | None      | None     | None  | None     |         | C-Min       |             | C-Min |
| Act Effct Green (s)     |           | 12.8     |       | 12.8     | 5.2     | 51.8        | 6.8         | 56.9  |
| Actuated g/C Ratio      |           | 0.17     |       | 0.17     | 0.07    | 0.67        | 0.09        | 0.74  |
| v/c Ratio               |           | 0.43     |       | 0.24     | 0.04    | 0.31        | 0.30        | 0.49  |
| Control Delay           |           | 26.2     |       | 22.0     | 33.6    | 9.7         | 36.0        | 14.6  |
| Queue Delay             |           | 0.0      |       | 0.0      | 0.0     | 0.0         | 0.0         | 0.0   |
| Total Delay             |           | 26.2     |       | 22.0     | 33.6    | 9.7         | 36.0        | 14.6  |
| LOS                     |           | С        |       | С        | С       | Α           | D           | В     |
| Approach Delay          |           | 26.2     |       | 22.0     |         | 9.8         |             | 15.4  |
| Approach LOS            |           | С        |       | С        |         | Α           |             | В     |
| Intersection Summary    |           |          |       |          |         |             |             |       |
| Cycle Length: 77        |           |          |       |          |         |             |             |       |
| Actuated Cycle Length   | : 77      |          |       |          |         |             |             |       |
| Offset: 76 (99%), Refe  |           | phase    | 2:NBT | and 6:S  | BT, Sta | rt of Ye    | llow        |       |
| Natural Cycle: 80       |           | •        |       |          |         |             |             |       |
| Control Type: Actuated  | d-Coordir | nated    |       |          |         |             |             |       |
| Maximum v/c Ratio: 0.   | 49        |          |       |          |         |             |             |       |
| Intersection Signal Del | ay: 14.3  |          |       | - 1      | ntersec | tion LOS    | S: B        |       |
| Intersection Capacity L |           | 60.5%    |       | - 1      | CU Lev  | el of Se    | rvice B     |       |
| Analysis Period (min)   |           |          |       |          |         |             |             |       |
| . ,                     |           |          |       |          |         |             |             |       |

Splits and Phases: 102: Glenbrook Way & Torrey Pines Road



Timings Synchro 6 Report Page 4

Venter Inst. Site Access Study 102: Glenbrook Way & Torrey Pines Road

Existing With Project Conditions - Left-Turn Inbound PM Peak Hour

|                         | -    | •    | 1    | <b>†</b> | -    | ↓    |
|-------------------------|------|------|------|----------|------|------|
| Lane Group              | EBT  | WBT  | NBL  | NBT      | SBL  | SBT  |
| Lane Group Flow (vph)   | 107  | 68   | 5    | 731      | 47   | 1274 |
| v/c Ratio               | 0.43 | 0.24 | 0.04 | 0.31     | 0.30 | 0.49 |
| Control Delay           | 26.2 | 22.0 | 33.6 | 9.7      | 36.0 | 14.6 |
| Queue Delay             | 0.0  | 0.0  | 0.0  | 0.0      | 0.0  | 0.0  |
| Total Delay             | 26.2 | 22.0 | 33.6 | 9.7      | 36.0 | 14.6 |
| Queue Length 50th (ft)  | 47   | 26   | 2    | 75       | 34   | 512  |
| Queue Length 95th (ft)  | 68   | 44   | 12   | 200      | m38  | #722 |
| Internal Link Dist (ft) | 339  | 332  |      | 281      |      | 304  |
| Turn Bay Length (ft)    |      |      |      |          | 150  |      |
| Base Capacity (vph)     | 551  | 623  | 234  | 2357     | 241  | 2580 |
| Starvation Cap Reductn  | 0    | 0    | 0    | 0        | 0    | 0    |
| Spillback Cap Reductn   | 0    | 0    | 0    | 0        | 0    | 0    |
| Storage Cap Reductn     | 0    | 0    | 0    | 0        | 0    | 0    |
| Reduced v/c Ratio       | 0.19 | 0.11 | 0.02 | 0.31     | 0.20 | 0.49 |

#### Intersection Summary

Queue shown is maximum after two cycles.

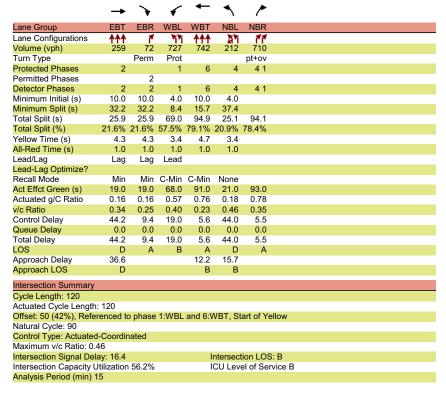
Venter Inst. Site Access Study Existing With Project Conditions - Left-Turn Inbound 102: Glenbrook Way & Torrey Pines Road PM Peak Hour

|                          | ۶          | <b>→</b> | •     | •    | <b>←</b> | •         | 1       | †          | ~         | <b>/</b> | <b>↓</b>   | 4    |
|--------------------------|------------|----------|-------|------|----------|-----------|---------|------------|-----------|----------|------------|------|
| Movement                 | EBL        | EBT      | EBR   | WBL  | WBT      | WBR       | NBL     | NBT        | NBR       | SBL      | SBT        | SBR  |
| Lane Configurations      |            | 4        |       |      | 4        |           | ٦       | <b>↑</b> ↑ |           | 7        | <b>↑</b> ↑ |      |
| Ideal Flow (vphpl)       | 1900       | 1900     | 1900  | 1900 | 1900     | 1900      | 1900    | 1900       | 1900      | 1900     | 1900       | 1900 |
| Total Lost time (s)      |            | 4.0      |       |      | 4.0      |           | 4.0     | 4.0        |           | 4.0      | 4.0        |      |
| Lane Util. Factor        |            | 1.00     |       |      | 1.00     |           | 1.00    | 0.95       |           | 1.00     | 0.95       |      |
| Frpb, ped/bikes          |            | 1.00     |       |      | 1.00     |           | 1.00    | 1.00       |           | 1.00     | 1.00       |      |
| Flpb, ped/bikes          |            | 1.00     |       |      | 1.00     |           | 1.00    | 1.00       |           | 1.00     | 1.00       |      |
| Frt                      |            | 0.99     |       |      | 0.98     |           | 1.00    | 0.99       |           | 1.00     | 0.99       |      |
| Flt Protected            |            | 0.97     |       |      | 0.98     |           | 0.95    | 1.00       |           | 0.95     | 1.00       |      |
| Satd. Flow (prot)        |            | 1787     |       |      | 1794     |           | 1770    | 3497       |           | 1770     | 3485       |      |
| Flt Permitted            |            | 0.81     |       |      | 0.91     |           | 0.95    | 1.00       |           | 0.95     | 1.00       |      |
| Satd. Flow (perm)        |            | 1502     |       |      | 1660     |           | 1770    | 3497       |           | 1770     | 3485       |      |
| Volume (vph)             | 67         | 33       | 4     | 20   | 37       | 9         | 5       | 664        | 45        | 46       | 1138       | 98   |
| Peak-hour factor, PHF    | 0.97       | 0.97     | 0.97  | 0.97 | 0.97     | 0.97      | 0.97    | 0.97       | 0.97      | 0.97     | 0.97       | 0.97 |
| Adj. Flow (vph)          | 69         | 34       | 4     | 21   | 38       | 9         | 5       | 685        | 46        | 47       | 1173       | 101  |
| RTOR Reduction (vph)     | 0          | 3        | 0     | 0    | 8        | 0         | 0       | 4          | 0         | 0        | 4          | 0    |
| Lane Group Flow (vph)    | 0          | 104      | 0     | 0    | 60       | 0         | 5       | 727        | 0         | 47       | 1270       | 0    |
| Confl. Peds. (#/hr)      | 10         |          | 10    | 10   |          | 10        |         |            | 10        |          |            | 10   |
| Turn Type                | Perm       |          |       | Perm |          |           | Prot    |            |           | Prot     |            |      |
| Protected Phases         |            | 4        |       |      | 4        |           | 5       | 2          |           | 1        | 6          |      |
| Permitted Phases         | 4          |          |       | 4    |          |           |         |            |           |          |            |      |
| Actuated Green, G (s)    |            | 11.0     |       |      | 11.0     |           | 1.1     | 46.7       |           | 4.5      | 50.4       |      |
| Effective Green, g (s)   |            | 11.9     |       |      | 11.9     |           | 1.5     | 48.2       |           | 4.9      | 51.6       |      |
| Actuated g/C Ratio       |            | 0.15     |       |      | 0.15     |           | 0.02    | 0.63       |           | 0.06     | 0.67       |      |
| Clearance Time (s)       |            | 4.9      |       |      | 4.9      |           | 4.4     | 5.5        |           | 4.4      | 5.2        |      |
| Vehicle Extension (s)    |            | 2.0      |       |      | 2.0      |           | 2.0     | 5.4        |           | 2.0      | 5.9        |      |
| Lane Grp Cap (vph)       |            | 232      |       |      | 257      |           | 34      | 2189       |           | 113      | 2335       |      |
| v/s Ratio Prot           |            |          |       |      |          |           | 0.00    | 0.21       |           | c0.03    | c0.36      |      |
| v/s Ratio Perm           |            | c0.07    |       |      | 0.04     |           |         |            |           |          |            |      |
| v/c Ratio                |            | 0.45     |       |      | 0.23     |           | 0.15    | 0.33       |           | 0.42     | 0.54       |      |
| Uniform Delay, d1        |            | 29.6     |       |      | 28.6     |           | 37.1    | 6.8        |           | 34.7     | 6.6        |      |
| Progression Factor       |            | 1.00     |       |      | 1.00     |           | 1.00    | 1.00       |           | 1.08     | 1.89       |      |
| Incremental Delay, d2    |            | 0.5      |       |      | 0.2      |           | 0.7     | 0.4        |           | 0.6      | 0.6        |      |
| Delay (s)                |            | 30.1     |       |      | 28.7     |           | 37.8    | 7.2        |           | 37.9     | 13.1       |      |
| Level of Service         |            | C        |       |      | C        |           | D       | Α          |           | D        | В          |      |
| Approach Delay (s)       |            | 30.1     |       |      | 28.7     |           |         | 7.4        |           | _        | 13.9       |      |
| Approach LOS             |            | С        |       |      | C        |           |         | Α          |           |          | В          |      |
| Intersection Summary     |            |          |       |      |          |           |         |            |           |          |            |      |
| HCM Average Control D    | elav       |          | 13.0  | -    | ICM Lev  | vel of Se | ervice  |            | В         |          |            |      |
| HCM Volume to Capacit    |            |          | 0.53  |      | IOW LE   | VCI 01 06 | oi vice |            | В         |          |            |      |
| Actuated Cycle Length (  |            |          | 77.0  | c    | Sum of I | ost time  | (e)     |            | 12.0      |          |            |      |
| Intersection Capacity Ut |            |          | 60.5% |      |          | el of Ser |         |            | 12.0<br>B |          |            |      |
| Analysis Period (min)    | ııızalıUII |          | 15    | ,    | CO LEVE  | 51 01 361 | VICE    |            | ь         |          |            |      |
| c Critical Lane Group    |            |          | 10    |      |          |           |         |            |           |          |            |      |
| onlical Lane Group       |            |          |       |      |          |           |         |            |           |          |            |      |

Queues Synchro 6 Report Page 5

Fehr & Peers Associates, Inc.

HCM Signalized Intersection Capacity Analysis


Synchro 6 Report Page 6

<sup># 95</sup>th percentile volume exceeds capacity, queue may be longer.


m Volume for 95th percentile queue is metered by upstream signal.

Venter Inst. Site Access Study Existing With Parcels 1-4 Conditions - Right-Turn Inbound Only 101: N Torrey Pines Rd & Torrey Pines Road

AM PEAK HOUR



Splits and Phases: 101: N Torrey Pines Rd & Torrey Pines Road



Timings Synchro 6 Report Page 1

Fehr & Peers Associates, Inc.

Venter Inst. Site Access Study Existing With Parcels 1-4 Conditions - Right-Turn Inbound Only 101: N Torrey Pines Rd & Torrey Pines Road

AM PEAK HOUR

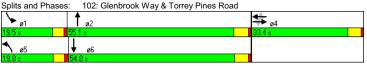
|                         | <b>→</b> | $\rightarrow$ | •    | <b>←</b> | 1    | <b>/</b> |
|-------------------------|----------|---------------|------|----------|------|----------|
| Lane Group              | EBT      | EBR           | WBL  | WBT      | NBL  | NBR      |
| Lane Group Flow (vph)   | 276      | 77            | 773  | 789      | 275  | 755      |
| v/c Ratio               | 0.34     | 0.25          | 0.40 | 0.23     | 0.46 | 0.35     |
| Control Delay           | 44.2     | 9.4           | 19.0 | 5.6      | 44.0 | 5.5      |
| Queue Delay             | 0.0      | 0.0           | 0.0  | 0.0      | 0.0  | 0.0      |
| Total Delay             | 44.2     | 9.4           | 19.0 | 5.6      | 44.0 | 5.5      |
| Queue Length 50th (ft)  | 74       | 0             | 125  | 47       | 106  | 65       |
| Queue Length 95th (ft)  | 90       | 39            | 305  | 121      | 124  | 159      |
| Internal Link Dist (ft) | 353      |               |      | 798      | 294  |          |
| Turn Bay Length (ft)    |          | 150           | 340  |          | 200  |          |
| Base Capacity (vph)     | 1036     | 376           | 2159 | 3572     | 745  | 2334     |
| Starvation Cap Reductn  | 0        | 0             | 0    | 0        | 0    | 0        |
| Spillback Cap Reductn   | 0        | 0             | 0    | 0        | 0    | 0        |
| Storage Cap Reductn     | 0        | 0             | 0    | 0        | 0    | 0        |
| Reduced v/c Ratio       | 0.27     | 0.20          | 0.36 | 0.22     | 0.37 | 0.32     |
| Intersection Summary    |          |               |      |          |      |          |

Queues Synchro 6 Report
Page 2

Venter Inst. Site Access Study Existing With Parcels 1-4 Conditions - Right-Turn Inbound Only 101: N Torrey Pines Rd & Torrey Pines Road AM PEAK HOUR

|                                          | -            | •            | •         | •           | ₹N      | 1          | -      |  |
|------------------------------------------|--------------|--------------|-----------|-------------|---------|------------|--------|--|
| Movement                                 | EBT          | EBR          | WBL       | WBT         | NBU     | NBL        | NBR    |  |
| Lane Configurations                      | <b>^</b>     | 7            | ሻሻ        | ተተተ         |         | <b>ል</b> ካ | 77     |  |
| Ideal Flow (vphpl)                       | 1900         | 1900         | 1900      | 1900        | 1900    | 1900       | 1900   |  |
| Total Lost time (s)                      | 4.0          | 4.0          | 4.0       | 4.0         |         | 4.0        | 4.0    |  |
| Lane Util. Factor                        | 0.91         | 1.00         | 0.97      | *0.80       |         | 0.97       | 0.88   |  |
| Frpb, ped/bikes                          | 1.00         | 0.97         | 1.00      | 1.00        |         | 1.00       | 1.00   |  |
| Flpb, ped/bikes                          | 1.00         | 1.00         | 1.00      | 1.00        |         | 1.00       | 1.00   |  |
| Frt                                      | 1.00         | 0.85         | 1.00      | 1.00        |         | 1.00       | 0.85   |  |
| Flt Protected                            | 1.00         | 1.00         | 0.95      | 1.00        |         | 0.95       | 1.00   |  |
| Satd. Flow (prot)                        | 5085         | 1544         | 3433      | 4471        |         | 3433       | 2787   |  |
| Flt Permitted                            | 1.00         | 1.00         | 0.95      | 1.00        |         | 0.95       | 1.00   |  |
| Satd. Flow (perm)                        | 5085         | 1544         | 3433      | 4471        |         | 3433       | 2787   |  |
| Volume (vph)                             | 259          | 72           | 727       | 742         | 47      | 212        | 710    |  |
| Peak-hour factor, PHF                    | 0.94         | 0.94         | 0.94      | 0.94        | 0.95    | 0.94       | 0.94   |  |
| Adj. Flow (vph)                          | 276          | 77           | 773       | 789         | 49      | 226        | 755    |  |
| RTOR Reduction (vph)                     | 0            | 65           | 0         | 0           | 0       | 0          | 0      |  |
| Lane Group Flow (vph)                    | 276          | 12           | 773       | 789         | 0       | 275        | 755    |  |
| Confl. Peds. (#/hr)                      |              | 10           |           |             |         |            | 10     |  |
| Turn Type                                |              | Perm         | Prot      |             | Split   |            | pt+ov  |  |
| Protected Phases                         | 2            |              | 1         | 6           | 4       | 4          | 4 1    |  |
| Permitted Phases                         |              | 2            |           |             |         |            |        |  |
| Actuated Green, G (s)                    | 17.7         | 17.7         | 67.6      | 89.3        |         | 20.6       | 92.6   |  |
| Effective Green, g (s)                   | 19.0         | 19.0         | 68.0      | 91.0        |         | 21.0       | 93.0   |  |
| Actuated g/C Ratio                       | 0.16         | 0.16         | 0.57      | 0.76        |         | 0.18       | 0.78   |  |
| Clearance Time (s)                       | 5.3          | 5.3          | 4.4       | 5.7         |         | 4.4        |        |  |
| Vehicle Extension (s)                    | 4.2          | 4.2          | 2.0       | 3.6         |         | 2.0        | 0400   |  |
| Lane Grp Cap (vph)                       | 805          | 244          | 1945      | 3391        |         | 601        | 2160   |  |
| v/s Ratio Prot                           | c0.05        | 0.04         | c0.23     | 0.18        |         | c0.08      | 0.27   |  |
| v/s Ratio Perm                           | 0.24         | 0.01         | 0.40      | 0.00        |         | 0.40       | 0.25   |  |
| v/c Ratio                                | 0.34         | 0.05         | 0.40      | 0.23        |         | 0.46       | 0.35   |  |
| Uniform Delay, d1                        | 44.9<br>1.00 | 42.8<br>1.00 | 14.5      | 4.3<br>1.00 |         | 1.00       | 1.00   |  |
| Progression Factor Incremental Delay, d2 | 0.4          | 0.1          | 1.00      | 0.2         |         | 0.2        | 0.0    |  |
| • • • • • • • • • • • • • • • • • • • •  | 45.3         | 43.0         | 15.2      | 4.4         |         | 44.6       | 4.2    |  |
| Delay (s)<br>Level of Service            | 45.3<br>D    | 43.0<br>D    | 15.2<br>B | 4.4<br>A    |         | 44.0<br>D  | 4.Z    |  |
| Approach Delay (s)                       | 44.8         | U            | Б         | 9.7         |         | 15.0       | А      |  |
| Approach LOS                             | 44.0<br>D    |              |           | 9.7<br>A    |         | 15.0<br>B  |        |  |
| Apploach LOS                             | U            |              |           | А           |         | О          |        |  |
| Intersection Summary                     |              |              |           |             |         |            |        |  |
| HCM Average Control D                    |              |              | 15.8      | Н           | ICM Le  | vel of S   | ervice |  |
| HCM Volume to Capacit                    |              |              | 0.40      |             | _       |            |        |  |
| Actuated Cycle Length (                  |              |              | 120.0     |             |         | ost time   |        |  |
| Intersection Capacity Ut                 | ilization    |              | 56.2%     | IC          | CU Leve | el of Sei  | rvice  |  |
| Analysis Period (min)                    |              |              | 15        |             |         |            |        |  |
| c Critical Lane Group                    |              |              |           |             |         |            |        |  |

HCM Signalized Intersection Capacity Analysis


Synchro 6 Report
Page 3

Fehr & Peers Associates, Inc.

Venter Inst. Site Access Study Existing With Parcels 1-4 Conditions - Right-Turn Inbound Only 102: Glenbrook Way & Torrey Pines Road

AM PEAK HOUR

|                          | ۶        | <b>→</b> | •     | <b>←</b> | 4       | <b>†</b>   | -       | ļ           |
|--------------------------|----------|----------|-------|----------|---------|------------|---------|-------------|
| Lane Group               | EBL      | EBT      | WBL   | WBT      | NBL     | NBT        | SBL     | SBT         |
| Lane Configurations      |          | 4        |       | 4        | ሻ       | <b>†</b> } | ሻ       | <b>↑</b> 1> |
| Volume (vph)             | 58       | 33       | 22    | 38       | 4       | 889        | 8       | 676         |
| Turn Type                | Perm     |          | Perm  |          | Prot    |            | Prot    |             |
| Protected Phases         |          | 4        |       | 4        | 5       | 2          | 1       | 6           |
| Permitted Phases         | 4        |          | 4     |          |         |            |         |             |
| Detector Phases          | 4        | 4        | 4     | 4        | 5       | 2          | 1       | 6           |
| Minimum Initial (s)      | 4.0      | 4.0      | 4.0   | 4.0      | 4.0     | 10.0       | 4.0     | 17.0        |
| Minimum Split (s)        | 36.9     | 36.9     | 36.9  | 36.9     | 8.4     | 22.5       | 8.4     | 22.2        |
| Total Split (s)          | 33.4     | 33.4     | 33.4  | 33.4     | 19.8    | 55.1       | 19.5    | 54.8        |
| Total Split (%)          |          |          |       |          | 18.3%   |            |         |             |
| Yellow Time (s)          | 3.9      | 3.9      | 3.9   | 3.9      | 3.4     | 4.5        | 3.4     | 4.2         |
| All-Red Time (s)         | 1.0      | 1.0      | 1.0   | 1.0      | 1.0     | 1.0        | 1.0     | 1.0         |
| Lead/Lag                 |          |          |       |          | Lead    | Lag        | Lead    | Lag         |
| Lead-Lag Optimize?       |          |          |       |          |         |            |         |             |
| Recall Mode              | None     | None     | None  | None     |         | C-Min      |         | C-Min       |
| Act Effct Green (s)      |          | 14.6     |       | 14.6     | 5.2     | 83.3       | 5.4     | 83.4        |
| Actuated g/C Ratio       |          | 0.14     |       | 0.14     | 0.05    | 0.77       | 0.05    | 0.77        |
| v/c Ratio                |          | 0.53     |       | 0.38     | 0.05    | 0.38       | 0.10    | 0.29        |
| Control Delay            |          | 40.8     |       | 32.6     | 49.0    | 6.3        | 49.0    | 5.5         |
| Queue Delay              |          | 0.0      |       | 0.0      | 0.0     | 0.0        | 0.0     | 0.0         |
| Total Delay              |          | 40.8     |       | 32.6     | 49.0    | 6.3        | 49.0    | 5.5         |
| LOS                      |          | D        |       | С        | D       | Α          | D       | Α           |
| Approach Delay           |          | 40.8     |       | 32.6     |         | 6.5        |         | 6.0         |
| Approach LOS             |          | D        |       | С        |         | Α          |         | Α           |
| Intersection Summary     |          |          |       |          |         |            |         |             |
| Cycle Length: 108        |          |          |       |          |         |            |         |             |
| Actuated Cycle Length:   |          |          |       |          |         |            |         |             |
| Offset: 98 (91%), Refer  | enced to | phase    | 2:NBT | and 6:S  | BT, Sta | rt of Ye   | llow    |             |
| Natural Cycle: 70        | 0"       | -41      |       |          |         |            |         |             |
| Control Type: Actuated   |          | nated    |       |          |         |            |         |             |
| Maximum v/c Ratio: 0.5   | -        |          |       |          |         | I C        | 7. A    |             |
| Intersection Signal Dela |          | 40.70    |       |          | ntersec |            |         |             |
| Intersection Capacity U  |          | 48.7%    |       | - 1      | CU Lev  | ei of Se   | rvice A |             |
| Analysis Period (min) 1  | 5        |          |       |          |         |            |         |             |



Timings Synchro 6 Report Page 4

Venter Inst. Site Access Study Existing With Parcels 1-4 Conditions - Right-Turn Inbound Only 102: Glenbrook Way & Torrey Pines Road

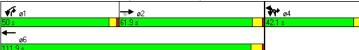
AM PEAK HOUR

|                         | -    | •    | 1    | Ť    | -    | ŧ    |
|-------------------------|------|------|------|------|------|------|
| Lane Group              | EBT  | WBT  | NBL  | NBT  | SBL  | SBT  |
| Lane Group Flow (vph)   | 108  | 89   | 4    | 1021 | 9    | 781  |
| v/c Ratio               | 0.53 | 0.38 | 0.05 | 0.38 | 0.10 | 0.29 |
| Control Delay           | 40.8 | 32.6 | 49.0 | 6.3  | 49.0 | 5.5  |
| Queue Delay             | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |
| Total Delay             | 40.8 | 32.6 | 49.0 | 6.3  | 49.0 | 5.5  |
| Queue Length 50th (ft)  | 69   | 47   | 3    | 74   | 6    | 51   |
| Queue Length 95th (ft)  | 104  | 80   | 14   | 275  | 22   | 192  |
| Internal Link Dist (ft) | 200  | 226  |      | 276  |      | 322  |
| Turn Bay Length (ft)    |      |      |      |      | 150  |      |
| Base Capacity (vph)     | 403  | 457  | 259  | 2694 | 254  | 2698 |
| Starvation Cap Reductn  | 0    | 0    | 0    | 0    | 0    | 0    |
| Spillback Cap Reductn   | 0    | 0    | 0    | 0    | 0    | 0    |
| Storage Cap Reductn     | 0    | 0    | 0    | 0    | 0    | 0    |
| Reduced v/c Ratio       | 0.27 | 0.19 | 0.02 | 0.38 | 0.04 | 0.29 |
| Intersection Summary    |      |      |      |      |      |      |

|                          | <b>≯</b> | -     | •     | •    | ←       | •         | 4      | <b>†</b>    | ~         | <b>\</b> | <b>↓</b>   | 1    |
|--------------------------|----------|-------|-------|------|---------|-----------|--------|-------------|-----------|----------|------------|------|
| Movement                 | EBL      | EBT   | EBR   | WBL  | WBT     | WBR       | NBL    | NBT         | NBR       | SBL      | SBT        | SBR  |
| Lane Configurations      |          | 4     |       |      | 44      |           | ሻ      | <b>†</b> 1> |           | *        | <b>†</b> } |      |
| Ideal Flow (vphpl)       | 1900     | 1900  | 1900  | 1900 | 1900    | 1900      | 1900   | 1900        | 1900      | 1900     | 1900       | 1900 |
| Total Lost time (s)      |          | 4.0   |       |      | 4.0     |           | 4.0    | 4.0         |           | 4.0      | 4.0        |      |
| Lane Util. Factor        |          | 1.00  |       |      | 1.00    |           | 1.00   | 0.95        |           | 1.00     | 0.95       |      |
| Frpb, ped/bikes          |          | 1.00  |       |      | 0.99    |           | 1.00   | 1.00        |           | 1.00     | 1.00       |      |
| Flpb, ped/bikes          |          | 1.00  |       |      | 1.00    |           | 1.00   | 1.00        |           | 1.00     | 1.00       |      |
| Frt                      |          | 0.99  |       |      | 0.96    |           | 1.00   | 0.99        |           | 1.00     | 0.99       |      |
| Flt Protected            |          | 0.97  |       |      | 0.99    |           | 0.95   | 1.00        |           | 0.95     | 1.00       |      |
| Satd. Flow (prot)        |          | 1773  |       |      | 1757    |           | 1770   | 3494        |           | 1770     | 3490       |      |
| Flt Permitted            |          | 0.73  |       |      | 0.91    |           | 0.95   | 1.00        |           | 0.95     | 1.00       |      |
| Satd. Flow (perm)        |          | 1324  |       |      | 1614    |           | 1770   | 3494        |           | 1770     | 3490       |      |
| Volume (vph)             | 58       | 33    | 10    | 22   | 38      | 22        | 4      | 889         | 60        | 8        | 676        | 50   |
| Peak-hour factor, PHF    | 0.93     | 0.93  | 0.93  | 0.93 | 0.93    | 0.93      | 0.93   | 0.93        | 0.93      | 0.93     | 0.93       | 0.93 |
| Adj. Flow (vph)          | 62       | 35    | 11    | 24   | 41      | 24        | 4      | 956         | 65        | 9        | 727        | 54   |
| RTOR Reduction (vph)     | 0        | 4     | 0     | 0    | 15      | 0         | 0      | 2           | 0         | 0        | 3          | 0    |
| Lane Group Flow (vph)    | 0        | 104   | 0     | 0    | 74      | 0         | 4      | 1019        | 0         | 9        | 778        | 0    |
| Confl. Peds. (#/hr)      | 10       |       | 10    | 10   |         | 10        |        |             | 10        |          |            | 10   |
| Turn Type                | Perm     |       |       | Perm |         |           | Prot   |             |           | Prot     |            |      |
| Protected Phases         |          | 4     |       |      | 4       |           | 5      | 2           |           | 1        | 6          |      |
| Permitted Phases         | 4        |       |       | 4    |         |           |        |             |           |          |            |      |
| Actuated Green, G (s)    |          | 13.7  |       |      | 13.7    |           | 1.1    | 78.3        |           | 1.2      | 78.7       |      |
| Effective Green, g (s)   |          | 14.6  |       |      | 14.6    |           | 1.5    | 79.8        |           | 1.6      | 79.9       |      |
| Actuated g/C Ratio       |          | 0.14  |       |      | 0.14    |           | 0.01   | 0.74        |           | 0.01     | 0.74       |      |
| Clearance Time (s)       |          | 4.9   |       |      | 4.9     |           | 4.4    | 5.5         |           | 4.4      | 5.2        |      |
| Vehicle Extension (s)    |          | 2.0   |       |      | 2.0     |           | 2.0    | 5.4         |           | 2.0      | 5.9        |      |
| Lane Grp Cap (vph)       |          | 179   |       |      | 218     |           | 25     | 2582        |           | 26       | 2582       |      |
| v/s Ratio Prot           |          |       |       |      | 2.0     |           | 0.00   | c0.29       |           | c0.01    | 0.22       |      |
| v/s Ratio Perm           |          | c0.08 |       |      | 0.05    |           | 0.00   | 00.20       |           | 00.01    | 0.22       |      |
| v/c Ratio                |          | 0.58  |       |      | 0.34    |           | 0.16   | 0.39        |           | 0.35     | 0.30       |      |
| Uniform Delay, d1        |          | 43.8  |       |      | 42.3    |           | 52.6   | 5.2         |           | 52.7     | 4.7        |      |
| Progression Factor       |          | 1.00  |       |      | 1.00    |           | 1.00   | 1.00        |           | 1.00     | 1.00       |      |
| Incremental Delay, d2    |          | 2.8   |       |      | 0.3     |           | 1.1    | 0.5         |           | 2.9      | 0.3        |      |
| Delay (s)                |          | 46.6  |       |      | 42.7    |           | 53.7   | 5.6         |           | 55.6     | 5.0        |      |
| Level of Service         |          | D     |       |      | D       |           | D      | A.          |           | E        | Α          |      |
| Approach Delay (s)       |          | 46.6  |       |      | 42.7    |           |        | 5.8         |           |          | 5.6        |      |
| Approach LOS             |          | D     |       |      | D       |           |        | A           |           |          | A          |      |
| Intersection Summary     |          |       |       |      |         |           |        |             |           |          |            |      |
| HCM Average Control D    | play     |       | 9.6   | L    | ICM Lo  | vel of Se | nvice  |             | A         |          |            |      |
| HCM Volume to Capacit    |          |       | 0.42  |      | IOW LE  | voi oi se | N VICE |             |           |          |            |      |
| Actuated Cycle Length (  |          |       | 108.0 |      | um of I | ost time  | (c)    |             | 12.0      |          |            |      |
| Intersection Capacity Ut |          |       | 48.7% |      |         | el of Ser |        |             | 12.0<br>A |          |            |      |
|                          |          |       |       |      |         |           |        |             |           |          |            |      |

c Critical Lane Group

Synchro 6 Report Page 5 Queues


HCM Signalized Intersection Capacity Analysis Synchro 6 Report Page 6

Fehr & Peers Associates, Inc.

Venter Inst. Site Access Study Existing With Parcels 1-4 Conditions - Right-Turn Inbound Only 101: N Torrey Pines Rd & Torrey Pines Road PM Peak Hour

|                         | -         | •       | •       | •        | 7       |           |        |
|-------------------------|-----------|---------|---------|----------|---------|-----------|--------|
| Lane Group              | EBT       | EBR     | WBL     | WBT      | NBL     | NBR       |        |
| Lane Configurations     | ተተተ       | 7       | ሻሻ      | <b>^</b> | ሽኘ      | 77        |        |
| Volume (vph)            | 1053      | 314     | 936     | 538      | 85      | 650       |        |
| Turn Type               |           | Perm    | Prot    |          |         | pt+ov     |        |
| Protected Phases        | 2         |         | 1       | 6        | 4       | 4 1       |        |
| Permitted Phases        |           | 2       |         |          |         |           |        |
| Detector Phases         | 2         | 2       | 1       | 6        | 4       | 4 1       |        |
| Minimum Initial (s)     | 10.0      | 10.0    | 4.0     | 10.0     | 4.0     |           |        |
| Minimum Split (s)       | 32.3      | 32.3    | 8.4     | 15.7     | 37.4    |           |        |
| Total Split (s)         | 61.9      | 61.9    | 50.0    | 111.9    | 42.1    | 92.1      |        |
| Total Split (%)         |           |         | 32.5%   |          |         | 59.8%     |        |
| Yellow Time (s)         | 4.3       | 4.3     | 3.4     | 4.7      | 3.4     |           |        |
| All-Red Time (s)        | 1.0       | 1.0     | 1.0     | 1.0      | 1.0     |           |        |
| Lead/Lag                | Lag       | Lag     | Lead    |          |         |           |        |
| Lead-Lag Optimize?      |           |         |         |          |         |           |        |
| Recall Mode             | C-Min     | C-Min   | Min     | C-Min    | None    |           |        |
| Act Effct Green (s)     | 59.0      | 59.0    | 51.9    | 114.8    | 31.2    | 87.0      |        |
| Actuated g/C Ratio      | 0.38      | 0.38    | 0.34    | 0.75     | 0.20    | 0.56      |        |
| v/c Ratio               | 0.58      | 0.46    | 0.86    | 0.17     | 0.14    | 0.44      |        |
| Control Delay           | 39.6      | 14.8    | 56.2    | 6.0      | 49.5    | 22.0      |        |
| Queue Delay             | 1.3       | 0.7     | 0.0     | 0.0      | 0.0     | 0.0       |        |
| Total Delay             | 40.9      | 15.5    | 56.2    | 6.0      | 49.5    | 22.0      |        |
| LOS                     | D         | В       | E       | Α        | D       | С         |        |
| Approach Delay          | 35.1      |         |         | 37.9     | 25.3    |           |        |
| Approach LOS            | D         |         |         | D        | С       |           |        |
| Intersection Summary    |           |         |         |          |         |           |        |
| Cycle Length: 154       |           |         |         |          |         |           |        |
| Actuated Cycle Length   | : 154     |         |         |          |         |           |        |
| Offset: 115 (75%), Ref  |           | to phas | e 2:EB1 | and 6:   | WBT. S  | tart of Y | ellow  |
| Natural Cycle: 100      |           |         |         |          | , -     |           |        |
| Control Type: Actuated  | d-Coordir | nated   |         |          |         |           |        |
| Maximum v/c Ratio: 0.   |           |         |         |          |         |           |        |
| Intersection Signal Del | ay: 34.2  |         |         |          | ntersec | tion LOS  | : C    |
| Intersection Capacity U |           | 69.4%   |         | i        | CU Lev  | el of Ser | vice C |
| Analysis Period (min)   |           |         |         |          |         |           |        |
| ,                       |           |         |         |          |         |           |        |

Splits and Phases: 101: N Torrey Pines Rd & Torrey Pines Road



Timings Synchro 6 Report Page 1

Fehr & Peers Associates, Inc.

Venter Inst. Site Access Study Existing With Parcels 1-4 Conditions - Right-Turn Inbound Only 101: N Torrey Pines Rd & Torrey Pines Road PM Peak Hour

|                         | <b>→</b> | •    | •    | ←    | <b>1</b> | <b>/</b> |
|-------------------------|----------|------|------|------|----------|----------|
| Lane Group              | EBT      | EBR  | WBL  | WBT  | NBL      | NBR      |
| Lane Group Flow (vph)   | 1120     | 334  | 996  | 572  | 95       | 691      |
| v/c Ratio               | 0.58     | 0.46 | 0.86 | 0.17 | 0.14     | 0.44     |
| Control Delay           | 39.6     | 14.8 | 56.2 | 6.0  | 49.5     | 22.0     |
| Queue Delay             | 1.3      | 0.7  | 0.0  | 0.0  | 0.0      | 0.0      |
| Total Delay             | 40.9     | 15.5 | 56.2 | 6.0  | 49.5     | 22.0     |
| Queue Length 50th (ft)  | 347      | 90   | 463  | 67   | 37       | 166      |
| Queue Length 95th (ft)  | 378      | 176  | 580  | 82   | 69       | 247      |
| Internal Link Dist (ft) | 353      |      |      | 798  | 314      |          |
| Turn Bay Length (ft)    |          | 150  | 340  |      | 200      |          |
| Base Capacity (vph)     | 2008     | 737  | 1157 | 3334 | 849      | 1575     |
| Starvation Cap Reductn  | 626      | 163  | 0    | 0    | 0        | 0        |
| Spillback Cap Reductn   | 0        | 0    | 0    | 0    | 0        | 0        |
| Storage Cap Reductn     | 0        | 0    | 0    | 0    | 0        | 0        |
| Reduced v/c Ratio       | 0.81     | 0.58 | 0.86 | 0.17 | 0.11     | 0.44     |
| Intersection Summary    |          |      |      |      |          |          |

Queues Synchro 6 Report Page 2

Venter Inst. Site Access Study Existing With Parcels 1-4 Conditions - Right-Turn Inbound Only 101: N Torrey Pines Rd & Torrey Pines Road PM Peak Hour

|                           | -          | •    | •     | ←          | <b>₽</b> I | 1        |        |      |
|---------------------------|------------|------|-------|------------|------------|----------|--------|------|
| Movement                  | EBT        | EBR  | WBL   | WBT        | NBU        | NBL      | NBR    |      |
| Lane Configurations       | <b>^</b> ^ | 7    | ሻሻ    | <b>^</b> ^ |            | ሽኘ       | 77     |      |
| Ideal Flow (vphpl)        | 1900       | 1900 | 1900  | 1900       | 1900       | 1900     | 1900   |      |
| Total Lost time (s)       | 4.0        | 4.0  | 4.0   | 4.0        |            | 4.0      | 4.0    |      |
| Lane Util. Factor         | 0.91       | 1.00 | 0.97  | *0.80      |            | 0.97     | 0.88   |      |
| Frpb, ped/bikes           | 1.00       | 0.97 | 1.00  | 1.00       |            | 1.00     | 1.00   |      |
| Flpb, ped/bikes           | 1.00       | 1.00 | 1.00  | 1.00       |            | 1.00     | 1.00   |      |
| =rt                       | 1.00       | 0.85 | 1.00  | 1.00       |            | 1.00     | 0.85   |      |
| Flt Protected             | 1.00       | 1.00 | 0.95  | 1.00       |            | 0.95     | 1.00   |      |
| Satd. Flow (prot)         | 5085       | 1538 | 3433  | 4471       |            | 3433     | 2787   |      |
| It Permitted              | 1.00       | 1.00 | 0.95  | 1.00       |            | 0.95     | 1.00   |      |
| Satd. Flow (perm)         | 5085       | 1538 | 3433  | 4471       |            | 3433     | 2787   |      |
| /olume (vph)              | 1053       | 314  | 936   | 538        | 5          | 85       | 650    |      |
| Peak-hour factor, PHF     | 0.94       | 0.94 | 0.94  | 0.94       | 0.95       | 0.94     | 0.94   |      |
| dj. Flow (vph)            | 1120       | 334  | 996   | 572        | 5          | 90       | 691    |      |
| TOR Reduction (vph)       | 0          | 132  | 0     | 0          | 0          | 0        | 0      |      |
| ane Group Flow (vph)      | 1120       | 202  | 996   | 572        | 0          | 95       | 691    |      |
| Confl. Peds. (#/hr)       |            | 10   |       |            |            |          | 10     |      |
| urn Type                  |            | Perm | Prot  |            | Split      |          | pt+ov  |      |
| rotected Phases           | 2          |      | 1     | 6          | 4          | 4        | 4 1    |      |
| Permitted Phases          |            | 2    |       |            |            |          |        |      |
| Actuated Green, G (s)     | 57.6       | 57.6 | 51.5  | 113.1      |            | 30.8     | 86.7   |      |
| Effective Green, g (s)    | 58.9       | 58.9 | 51.9  | 114.8      |            | 31.2     | 87.1   |      |
| ctuated g/C Ratio         | 0.38       | 0.38 | 0.34  | 0.75       |            | 0.20     | 0.57   |      |
| Clearance Time (s)        | 5.3        | 5.3  | 4.4   | 5.7        |            | 4.4      |        |      |
| /ehicle Extension (s)     | 4.2        | 4.2  | 2.0   | 3.6        |            | 2.0      |        |      |
| ane Grp Cap (vph)         | 1945       | 588  | 1157  | 3333       |            | 696      | 1576   |      |
| //s Ratio Prot            | c0.22      |      | c0.29 | 0.13       |            | 0.03     | c0.25  |      |
| /s Ratio Perm             |            | 0.13 |       |            |            |          |        |      |
| ı/c Ratio                 | 0.58       | 0.34 | 0.86  | 0.17       |            | 0.14     | 0.44   |      |
| Jniform Delay, d1         | 37.7       | 33.8 | 47.7  | 5.7        |            | 50.4     | 19.3   |      |
| Progression Factor        | 1.00       | 1.00 | 1.00  | 1.00       |            | 0.99     | 1.10   |      |
| ncremental Delay, d2      | 1.2        | 1.6  | 6.5   | 0.1        |            | 0.0      | 0.1    |      |
| Delay (s)                 | 38.9       | 35.4 | 54.2  | 5.8        |            | 49.8     | 21.4   |      |
| Level of Service          | D          | D    | D     | Α          |            | D        | С      |      |
| Approach Delay (s)        | 38.1       |      |       | 36.6       |            | 24.8     |        |      |
| Approach LOS              | D          |      |       | D          |            | С        |        |      |
| ntersection Summary       |            |      |       |            |            |          |        |      |
| ICM Average Control D     | elay       |      | 34.7  | H          | ICM Lev    | el of Se | ervice | С    |
| ICM Volume to Capacit     | y ratio    |      | 0.65  |            |            |          |        |      |
| Actuated Cycle Length (   |            |      | 154.0 | S          | Sum of Id  | st time  | (s)    | 12.0 |
| Intersection Capacity Uti | lization   |      | 69.4% | 10         | CU Leve    | of Ser   | vice   | С    |
| Analysis Period (min)     |            |      | 15    |            |            |          |        |      |
| Critical Lane Group       |            |      |       |            |            |          |        |      |

HCM Signalized Intersection Capacity Analysis

Fehr & Peers Associates, Inc.

Synchro 6 Report

Page 3

Venter Inst. Site Access Study Existing With Parcels 1-4 Conditions - Right-Turn Inbound Only 102: Glenbrook Way & Torrey Pines Road PM Peak Hour

|                          | •           | -       | •     | <b>←</b> | 4       | <b>†</b>    | -       | <b>↓</b>    |
|--------------------------|-------------|---------|-------|----------|---------|-------------|---------|-------------|
| Lane Group               | EBL         | EBT     | WBL   | WBT      | NBL     | NBT         | SBL     | SBT         |
| Lane Configurations      |             | 4       |       | 4        | ሻ       | <b>∱</b> î> | ሻ       | <b>↑</b> 1> |
| Volume (vph)             | 67          | 33      | 20    | 37       | 5       | 664         | 46      | 1138        |
| Turn Type                | Perm        |         | Perm  |          | Prot    |             | Prot    |             |
| Protected Phases         |             | 4       |       | 4        | 5       | 2           | 1       | 6           |
| Permitted Phases         | 4           |         | 4     |          |         |             |         |             |
| Detector Phases          | 4           | 4       | 4     | 4        | 5       | 2           | 1       | 6           |
| Minimum Initial (s)      | 4.0         | 4.0     | 4.0   | 4.0      | 4.0     | 10.0        | 4.0     | 17.0        |
| Minimum Split (s)        | 36.9        | 36.9    | 36.9  | 36.9     | 8.4     | 22.5        | 8.4     | 22.2        |
| Total Split (s)          | 32.4        | 32.4    | 32.4  | 32.4     | 14.2    | 30.1        | 14.5    | 30.4        |
| Total Split (%)          |             | 42.1%   |       |          |         |             | 18.8%   | 39.5%       |
| Yellow Time (s)          | 3.9         | 3.9     | 3.9   | 3.9      | 3.4     | 4.5         | 3.4     | 4.2         |
| All-Red Time (s)         | 1.0         | 1.0     | 1.0   | 1.0      | 1.0     | 1.0         | 1.0     | 1.0         |
| Lead/Lag                 |             |         |       |          | Lead    | Lag         | Lead    | Lag         |
| Lead-Lag Optimize?       |             |         |       |          |         |             |         |             |
| Recall Mode              | None        | None    | None  | None     |         | C-Min       |         | C-Min       |
| Act Effct Green (s)      |             | 12.8    |       | 12.8     | 5.2     | 51.8        | 6.8     | 56.9        |
| Actuated g/C Ratio       |             | 0.17    |       | 0.17     | 0.07    | 0.67        | 0.09    | 0.74        |
| v/c Ratio                |             | 0.43    |       | 0.24     | 0.04    | 0.31        | 0.30    | 0.49        |
| Control Delay            |             | 26.2    |       | 22.0     | 33.6    | 9.7         | 36.0    | 14.5        |
| Queue Delay              |             | 0.0     |       | 0.0      |         | 0.0         | 0.0     | 0.0         |
| Total Delay              |             | 26.2    |       | 22.0     | 33.6    | 9.7         | 36.0    | 14.5        |
| LOS                      |             | С       |       | С        | С       | Α           | D       | В           |
| Approach Delay           |             | 26.2    |       | 22.0     |         | 9.8         |         | 15.3        |
| Approach LOS             |             | С       |       | С        |         | Α           |         | В           |
| Intersection Summary     |             |         |       |          |         |             |         |             |
| Cycle Length: 77         |             |         |       |          |         |             |         |             |
| Actuated Cycle Length:   | : 77        |         |       |          |         |             |         |             |
| Offset: 76 (99%), Refer  | renced to   | o phase | 2:NBT | and 6:S  | BT, Sta | rt of Ye    | llow    |             |
| Natural Cycle: 80        |             | •       |       |          |         |             |         |             |
| Control Type: Actuated   | -Coordin    | nated   |       |          |         |             |         |             |
| Maximum v/c Ratio: 0.4   | 49          |         |       |          |         |             |         |             |
| Intersection Signal Dela | ay: 14.2    |         |       | I        | ntersec | tion LOS    | S: B    |             |
| Intersection Capacity U  | Itilizatior | 60.5%   |       | I        | CU Lev  | el of Se    | rvice B |             |
| Analysis Period (min) 1  | 5           |         |       |          |         |             |         |             |
|                          |             |         |       |          |         |             |         |             |

Splits and Phases: 102: Glenbrook Way & Torrey Pines Road



Timings Synchro 6 Report Page 4

Venter Inst. Site Access Study Existing With Parcels 1-4 Conditions - Right-Turn Inbound Only 102: Glenbrook Way & Torrey Pines Road

PM Peak Hour

|                         | -    | •    | 1    | <b>†</b> | -    | ţ    |
|-------------------------|------|------|------|----------|------|------|
| Lane Group              | EBT  | WBT  | NBL  | NBT      | SBL  | SBT  |
| Lane Group Flow (vph)   | 107  | 68   | 5    | 731      | 47   | 1274 |
| v/c Ratio               | 0.43 | 0.24 | 0.04 | 0.31     | 0.30 | 0.49 |
| Control Delay           | 26.2 | 22.0 | 33.6 | 9.7      | 36.0 | 14.5 |
| Queue Delay             | 0.0  | 0.0  | 0.0  | 0.0      | 0.0  | 0.0  |
| Total Delay             | 26.2 | 22.0 | 33.6 | 9.7      | 36.0 | 14.5 |
| Queue Length 50th (ft)  | 47   | 26   | 2    | 75       | 33   | 488  |
| Queue Length 95th (ft)  | 68   | 44   | 12   | 200      | m37  | #721 |
| Internal Link Dist (ft) | 339  | 332  |      | 281      |      | 304  |
| Turn Bay Length (ft)    |      |      |      |          | 150  |      |
| Base Capacity (vph)     | 551  | 623  | 234  | 2357     | 241  | 2580 |
| Starvation Cap Reductn  | 0    | 0    | 0    | 0        | 0    | 0    |
| Spillback Cap Reductn   | 0    | 0    | 0    | 0        | 0    | 0    |
| Storage Cap Reductn     | 0    | 0    | 0    | 0        | 0    | 0    |
| Reduced v/c Ratio       | 0.19 | 0.11 | 0.02 | 0.31     | 0.20 | 0.49 |

Intersection Summary

Queue shown is maximum after two cycles.

Venter Inst. Site Access Study Existing With Parcels 1-4 Conditions - Right-Turn Inbound Only 102: Glenbrook Way & Torrey Pines Road

PM Peak Hour

|                          | ۶         | <b>→</b> | •     | •    | <b>←</b>  | •         | 4      | <b>†</b>   | /    | <b>\</b> | ļ          | 4    |
|--------------------------|-----------|----------|-------|------|-----------|-----------|--------|------------|------|----------|------------|------|
| Movement                 | EBL       | EBT      | EBR   | WBL  | WBT       | WBR       | NBL    | NBT        | NBR  | SBL      | SBT        | SBR  |
| Lane Configurations      |           | 4        |       |      | 4         |           | ሻ      | <b>↑</b> ↑ |      | ሻ        | <b>↑</b> ↑ |      |
| Ideal Flow (vphpl)       | 1900      | 1900     | 1900  | 1900 | 1900      | 1900      | 1900   | 1900       | 1900 | 1900     | 1900       | 1900 |
| Total Lost time (s)      |           | 4.0      |       |      | 4.0       |           | 4.0    | 4.0        |      | 4.0      | 4.0        |      |
| Lane Util. Factor        |           | 1.00     |       |      | 1.00      |           | 1.00   | 0.95       |      | 1.00     | 0.95       |      |
| Frpb, ped/bikes          |           | 1.00     |       |      | 1.00      |           | 1.00   | 1.00       |      | 1.00     | 1.00       |      |
| Flpb, ped/bikes          |           | 1.00     |       |      | 1.00      |           | 1.00   | 1.00       |      | 1.00     | 1.00       |      |
| Frt                      |           | 0.99     |       |      | 0.98      |           | 1.00   | 0.99       |      | 1.00     | 0.99       |      |
| Flt Protected            |           | 0.97     |       |      | 0.98      |           | 0.95   | 1.00       |      | 0.95     | 1.00       |      |
| Satd. Flow (prot)        |           | 1787     |       |      | 1794      |           | 1770   | 3497       |      | 1770     | 3485       |      |
| Flt Permitted            |           | 0.81     |       |      | 0.91      |           | 0.95   | 1.00       |      | 0.95     | 1.00       |      |
| Satd. Flow (perm)        |           | 1502     |       |      | 1660      |           | 1770   | 3497       |      | 1770     | 3485       |      |
| Volume (vph)             | 67        | 33       | 4     | 20   | 37        | 9         | 5      | 664        | 45   | 46       | 1138       | 98   |
| Peak-hour factor, PHF    | 0.97      | 0.97     | 0.97  | 0.97 | 0.97      | 0.97      | 0.97   | 0.97       | 0.97 | 0.97     | 0.97       | 0.97 |
| Adj. Flow (vph)          | 69        | 34       | 4     | 21   | 38        | 9         | 5      | 685        | 46   | 47       | 1173       | 101  |
| RTOR Reduction (vph)     | 0         | 3        | 0     | 0    | 8         | 0         | 0      | 4          | 0    | 0        | 4          | 0    |
| Lane Group Flow (vph)    | 0         | 104      | 0     | 0    | 60        | 0         | 5      | 727        | 0    | 47       | 1270       | 0    |
| Confl. Peds. (#/hr)      | 10        |          | 10    | 10   |           | 10        |        |            | 10   |          |            | 10   |
| Turn Type                | Perm      |          |       | Perm |           |           | Prot   |            |      | Prot     |            |      |
| Protected Phases         |           | 4        |       |      | 4         |           | 5      | 2          |      | 1        | 6          |      |
| Permitted Phases         | 4         |          |       | 4    |           |           |        |            |      |          |            |      |
| Actuated Green, G (s)    |           | 11.0     |       |      | 11.0      |           | 1.1    | 46.7       |      | 4.5      | 50.4       |      |
| Effective Green, g (s)   |           | 11.9     |       |      | 11.9      |           | 1.5    | 48.2       |      | 4.9      | 51.6       |      |
| Actuated g/C Ratio       |           | 0.15     |       |      | 0.15      |           | 0.02   | 0.63       |      | 0.06     | 0.67       |      |
| Clearance Time (s)       |           | 4.9      |       |      | 4.9       |           | 4.4    | 5.5        |      | 4.4      | 5.2        |      |
| Vehicle Extension (s)    |           | 2.0      |       |      | 2.0       |           | 2.0    | 5.4        |      | 2.0      | 5.9        |      |
| Lane Grp Cap (vph)       |           | 232      |       |      | 257       |           | 34     | 2189       |      | 113      | 2335       |      |
| v/s Ratio Prot           |           |          |       |      |           |           | 0.00   | 0.21       |      | c0.03    | c0.36      |      |
| v/s Ratio Perm           |           | c0.07    |       |      | 0.04      |           |        |            |      |          |            |      |
| v/c Ratio                |           | 0.45     |       |      | 0.23      |           | 0.15   | 0.33       |      | 0.42     | 0.54       |      |
| Uniform Delay, d1        |           | 29.6     |       |      | 28.6      |           | 37.1   | 6.8        |      | 34.7     | 6.6        |      |
| Progression Factor       |           | 1.00     |       |      | 1.00      |           | 1.00   | 1.00       |      | 1.08     | 1.87       |      |
| Incremental Delay, d2    |           | 0.5      |       |      | 0.2       |           | 0.7    | 0.4        |      | 0.6      | 0.6        |      |
| Delay (s)                |           | 30.1     |       |      | 28.7      |           | 37.8   | 7.2        |      | 38.0     | 12.9       |      |
| Level of Service         |           | С        |       |      | С         |           | D      | Α          |      | D        | В          |      |
| Approach Delay (s)       |           | 30.1     |       |      | 28.7      |           |        | 7.4        |      |          | 13.8       |      |
| Approach LOS             |           | С        |       |      | С         |           |        | Α          |      |          | В          |      |
| Intersection Summary     |           |          |       |      |           |           |        |            |      |          |            |      |
| HCM Average Control D    |           |          | 12.9  | H    | ICM Lev   | vel of Se | ervice |            | В    |          |            |      |
| HCM Volume to Capaci     |           |          | 0.53  |      |           |           |        |            |      |          |            |      |
| Actuated Cycle Length (  |           |          | 77.0  | S    | Sum of le | ost time  | (s)    |            | 12.0 |          |            |      |
| Intersection Capacity Ut | ilization |          | 60.5% | 10   | CU Leve   | el of Ser | vice   |            | В    |          |            |      |
| Analysis Period (min)    |           |          | 15    |      |           |           |        |            |      |          |            |      |
| a Critical Lana Group    |           |          |       |      |           |           |        |            |      |          |            |      |

c Critical Lane Group

Queues Synchro 6 Report Page 5

<sup># 95</sup>th percentile volume exceeds capacity, queue may be longer.

m Volume for 95th percentile queue is metered by upstream signal.

|                                 | Venter Institute Site Access Study University of California, San Diego |
|---------------------------------|------------------------------------------------------------------------|
|                                 | , , ,                                                                  |
|                                 |                                                                        |
|                                 |                                                                        |
|                                 |                                                                        |
|                                 |                                                                        |
|                                 |                                                                        |
|                                 |                                                                        |
|                                 |                                                                        |
|                                 |                                                                        |
|                                 | Attachment C                                                           |
| Minimum Required Throat Depth T | echnical Calculations                                                  |
|                                 |                                                                        |
|                                 |                                                                        |





 Project No
 OC06-0030
 Page No

 Subject
 UCSD

 La Jolla, CA
 Date
 7/27/2006

Computed by

ML

Maximum Queue Estimation for: Minor Street Right-Turn

Movement: Egress from Parcel 4 onto SB Torrey Pines Rd.

Major Street: Torrey Pines Rd.

Minor Street: Parcel 4 Driveway

Conditions: Parcel 4 Buildout - Left Turn In, Right Out - AM

#### **Input Data**

|      | Subject Approach       |
|------|------------------------|
| 6    | Traffic Volume (vph) = |
| 0.94 | PHF=                   |

| Major Street                        |      |
|-------------------------------------|------|
| Conflicting Traffic Volume (vph) =  | 765  |
| PHF=                                | 0.94 |
| Conflicting Number of Through Lanes | 1    |
| Posted Speed Limit (mph)=           | 45   |

| Is a Traffic Signal Located on Major  |   |
|---------------------------------------|---|
| Street Within 1/4 mi of intersection? | 1 |
| (Enter 1 if yes; 0 if no)             |   |

Output

| Estimated Maximum Queue          | 2  | vehicles |   |
|----------------------------------|----|----------|---|
| Estimated Maximum Storage Length | 50 | feet     | Ī |

| fp | FEHR & | PEERS |
|----|--------|-------|
|----|--------|-------|

| Project No | OC06-0030 | Page No      |           |
|------------|-----------|--------------|-----------|
| Subject    |           | UCSD         |           |
|            |           | La Jolla, Ca | Α         |
|            |           | Doto         | 7/27/2006 |

## Maximum Queue Estimation for: Minor Street Right-Turn

Movement: Egress from Parcel 4 to SB Torrey Pines Rd.

Major Street: Torrey Pines Rd.
Minor Street: Parcel 4 Driveway

Computed by

Conditions: Parcel 4 Buildout - Right In, Right Out - AM

#### **Input Data**

|      | Subject Approach       |
|------|------------------------|
| 6    | Traffic Volume (vph) = |
| 0.94 | PHF=[                  |

| Major Street                        |      |
|-------------------------------------|------|
| Conflicting Traffic Volume (vph) =  | 781  |
| PHF=                                | 0.94 |
| Conflicting Number of Through Lanes | 1    |
| Posted Speed Limit (mph)=           | 45   |

| Is a Traffic Signal Located on Major  |   |
|---------------------------------------|---|
| Street Within 1/4 mi of intersection? | 1 |
| (Enter 1 if yes; 0 if no)             |   |

|  | Estimated Maximum Queue          | 2  | vehicles |   |
|--|----------------------------------|----|----------|---|
|  | Estimated Maximum Storage Length | 50 | feet     | Ī |



 Project No
 OC06-0030
 Page No

 Subject
 UCSD

 La Jolla, CA

 Date
 7/27/2006

Maximum Queue Estimation for:
Minor Street Right-Turn

Movement: Egress onto SB Torrey Pines Rd.

Major Street: Torrey Pines Rd.

Minor Street: Parcel 4 Driveway

Computed by

Conditions: Parcels 1-4 Buildout - Left Turn In, Right Out - AM

#### **Input Data**

| 1    | Subject Approach       |
|------|------------------------|
| 5    | Traffic Volume (vph) = |
| 0.94 | PHF=[                  |

| Major Street                        |      |
|-------------------------------------|------|
| Conflicting Traffic Volume (vph) =  | 799  |
| PHF=                                | 0.94 |
| Conflicting Number of Through Lanes | 1    |
| Posted Speed Limit (mph)=           | 45   |

| Is a Traffic Signal Located on Major<br>Street Within 1/4 mi of intersection? | 4 |
|-------------------------------------------------------------------------------|---|
| (Enter 1 if yes; 0 if no)                                                     | 1 |

Output

|  | Estimated Maximum Queue          | 2  | vehicles |
|--|----------------------------------|----|----------|
|  | Estimated Maximum Storage Length | 50 | feet     |

| P   | FEHR       | &    | P   | EER    | S |
|-----|------------|------|-----|--------|---|
| . L | TRANSPORTA | TION | CON | SULTAN |   |

 Project No
 OC06-0030
 Page No

 Subject
 UCSD

 La Jolla, CA

 Date
 7/27/2006

## Maximum Queue Estimation for: Minor Street Right-Turn

Movement: Egress onto SB Torrey Pines Rd.

Major Street: Torrey Pines Rd.
Minor Street: Parcel 4 Driveway

Computed by

Conditions: Parcels 1-4 Buildout - Right In, Right Out - AM

#### **Input Data**

| Subject Approach       |      |
|------------------------|------|
| Traffic Volume (vph) = | 5    |
| PHF=[                  | 0.94 |

| Major Street                        |      |
|-------------------------------------|------|
| Conflicting Traffic Volume (vph) =  | 846  |
| PHF=                                | 0.94 |
| Conflicting Number of Through Lanes |      |
| Posted Speed Limit (mph)=           | 45   |

| Is a Traffic Signal Located on Major  |   |
|---------------------------------------|---|
| Street Within 1/4 mi of intersection? | 1 |
| (Enter 1 if yes; 0 if no)             |   |

| Estimated Maximum Queue          | 2  | vehicles |   |  |
|----------------------------------|----|----------|---|--|
| Estimated Maximum Storage Length | 50 | feet     | _ |  |



 Project No
 OC06-0030
 Page No

 Subject
 UCSD

 La Jolla, CA

 Date
 7/27/2006

Computed by

ML

## Maximum Queue Estimation for: Minor Street Right-Turn

Movement: Egress from Parcel 4 onto SB Torrey Pines Rd.

Major Street: Torrey Pines Rd.

Minor Street: Parcel 4 Driveway

Conditions: Parcel 4 Buildout - Left Turn In, Right Out - PM

#### **Input Data**

| Subject Approach       |      |
|------------------------|------|
| Traffic Volume (vph) = | 45   |
| PHF=                   | 0.94 |

| Major Street                        |      |
|-------------------------------------|------|
| Conflicting Traffic Volume (vph) =  | 1245 |
| PHF=                                | 0.94 |
| Conflicting Number of Through Lanes | 1    |
| Posted Speed Limit (mph)=           | 45   |

| Is a Traffic Signal Located on Major  |   |
|---------------------------------------|---|
| Street Within 1/4 mi of intersection? | 1 |
| (Enter 1 if yes; 0 if no)             |   |

Output

| Estimated Maximum Queue          | 4   | vehicles | _ |
|----------------------------------|-----|----------|---|
| Estimated Maximum Storage Length | 100 | feet     | Ī |

| fp | FEHR      |       | PEER      |    |
|----|-----------|-------|-----------|----|
|    | IKANSPUKI | ALIUN | CONSULIAN | 13 |

 Project No
 OC06-0030
 Page No

 Subject
 UCSD

 La Jolla, CA

Computed by

N/I

Date 7/27/2006

## Maximum Queue Estimation for: Minor Street Right-Turn

Movement: Egress from Parcel 4 to SB Torrey Pines Rd.

Major Street: Torrey Pines Rd.
Minor Street: Parcel 4 Driveway

Conditions: Parcel 4 Buildout - Right In, Right Out - PM

#### **Input Data**

|      | Subject Approach       |
|------|------------------------|
| 45   | Traffic Volume (vph) = |
| 0.94 | PHF=[                  |

| Major Stre                      | eet      |
|---------------------------------|----------|
| Conflicting Traffic Volume (vph | ) = 1247 |
| PH                              | F= 0.94  |
| nflicting Number of Through Lan | es 1     |
| Posted Speed Limit (mph         | 1)= 45   |

| Is a Traffic Signal Located on Major  |   |
|---------------------------------------|---|
| Street Within 1/4 mi of intersection? | 1 |
| (Enter 1 if yes; 0 if no)             |   |

| Estimated Maximum Queue          | 4   | vehicles |  |
|----------------------------------|-----|----------|--|
| Estimated Maximum Storage Length | 100 | feet     |  |



 Project No
 OC06-0030 OC06-

Computed by

ML

## Maximum Queue Estimation for: Minor Street Right-Turn

Movement: Egress onto SB Torrey Pines Rd.

Major Street: Torrey Pines Rd.

Minor Street: Parcel 4 Driveway

Conditions: Parcels 1-4 Buildout - Left Turn In, Right Out - PM

#### **Input Data**

|      | Subject Approach       |
|------|------------------------|
| 40   | Traffic Volume (vph) = |
| 0.94 | PHF=[                  |

| Major Street                        |      |
|-------------------------------------|------|
| Conflicting Traffic Volume (vph) =  | 1250 |
| PHF=                                | 0.94 |
| Conflicting Number of Through Lanes | 1    |
| Posted Speed Limit (mph)=           | 45   |

| Is a Traffic Signal Located on Major<br>Street Within 1/4 mi of intersection? | 1 |
|-------------------------------------------------------------------------------|---|
| (Enter 1 if yes; 0 if no)                                                     |   |

Output

| Estimated Maximum Queue          | 4   | vehicles | _ |
|----------------------------------|-----|----------|---|
| Estimated Maximum Storage Length | 100 | feet     | Ī |

| f | FEHR &         |  |
|---|----------------|--|
|   | TRANSPORTATION |  |

 Project No
 OC06-0030
 Page No

 Subject
 UCSD

 La Jolla, CA

Computed by

M

Date 7/27/2006

## Maximum Queue Estimation for: Minor Street Right-Turn

Movement: Egress onto SB Torrey Pines Rd.

Major Street: Torrey Pines Rd.

Minor Street: Parcel 4 Driveway

Conditions: Parcels 1-4 Buildout - Right In, Right Out - PM

#### **Input Data**

| Subject Approach       |      |
|------------------------|------|
| Traffic Volume (vph) = | 40   |
| PHF=                   | 0.94 |

| Major Street                        |      |
|-------------------------------------|------|
| Conflicting Traffic Volume (vph) =  | 1255 |
| PHF=                                | 0.94 |
| Conflicting Number of Through Lanes | 1    |
| Posted Speed Limit (mph)=           | 45   |

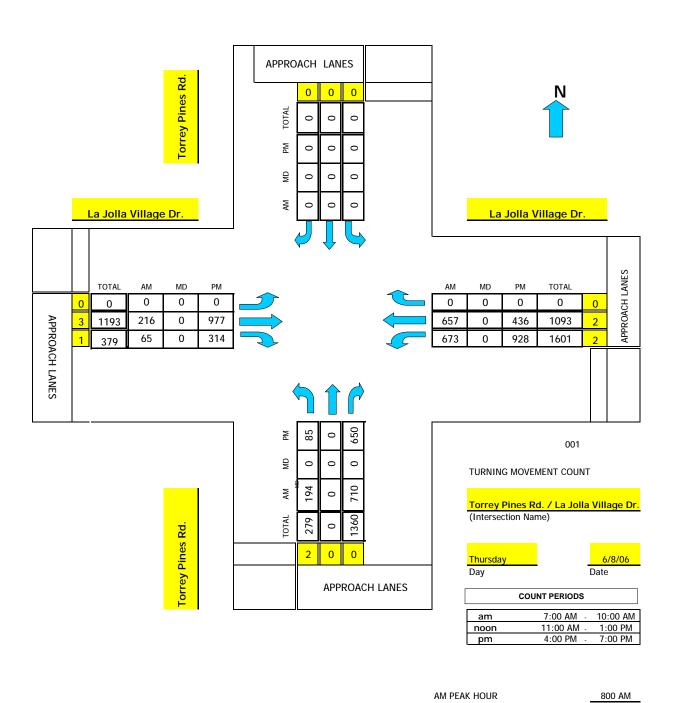
| Is | a Traffic Signal Located on Major   |   |
|----|-------------------------------------|---|
|    | reet Within 1/4 mi of intersection? | 4 |
|    |                                     | ' |
| (E | nter 1 if yes; 0 if no)             |   |

| Estimated Maximum Queue          | 4   | vehicles |
|----------------------------------|-----|----------|
| Estimated Maximum Storage Length | 100 | feet     |

| Venter Institute Site Access  | Study |
|-------------------------------|-------|
| University of California, San | Diego |

### Attachment D

### Intersection Traffic Counts


#### Note:

Attachment D contains the raw traffic count sheets. The volumes shown in the figures have been manually balanced between adjacent intersections as part of nearby University-related projects.



#### TMC Summary of Torrey Pines Rd./La Jolla Village Dr.

Project #: 06-4132-004



NOON PEAK HOUR

PM PEAK HOUR

0 AM

430 PM

# Intersection Turning Movement Prepared by: Southland Car Counters

N-S STREET: Torrey Pines Rd. LOCATION: City of La Jolla DATE: 06/08/2006

E-W STREET: La Jolla Village Dr. DAY: THURSDAY PROJECT# 06-4132-004

|                     | NO       | ORTHBO    | UND     | S       | OUTHBOU | JND     | E       | ASTBOU  | ND      | W       | ESTBOL  | IND     |       |
|---------------------|----------|-----------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|-------|
| LANES:              | NL<br>2  | NT<br>0   | NR<br>0 | SL<br>0 | ST<br>0 | SR<br>0 | EL<br>0 | ET<br>3 | ER<br>1 | WL<br>2 | WT<br>2 | WR<br>0 | TOTAL |
| 6:00 AM             |          |           |         |         |         |         |         |         |         |         |         |         |       |
| 6:15 AM<br>6:30 AM  |          |           |         |         |         |         |         |         |         |         |         |         |       |
| 6:45 AM             |          |           |         |         |         |         |         |         |         |         |         |         |       |
| 7:00 AM             | 18       |           | 93      |         |         |         |         | 25      | 14      | 227     | 84      |         | 461   |
| 7:15 AM             | 22       |           | 179     |         |         |         |         | 38      | 13      | 148     | 113     |         | 513   |
| 7:30 AM             | 45       |           | 198     |         |         |         |         | 35      | 9       | 125     | 138     |         | 550   |
| 7:45 AM             | 63       |           | 192     |         |         |         |         | 51      | 10      | 168     | 170     |         | 654   |
| 8:00 AM             | 45       |           | 157     |         |         |         |         | 46      | 16      | 170     | 162     |         | 596   |
| 8:15 AM             | 41       |           | 188     |         |         |         |         | 37      | 12      | 178     | 144     |         | 600   |
| 8:30 AM             | 54       |           | 207     |         |         |         |         | 57      | 18      | 145     | 172     |         | 653   |
| 8:45 AM             | 54       |           | 158     |         |         |         |         | 76      | 19      | 180     | 179     |         | 666   |
| 9:00 AM             |          |           |         |         |         |         |         |         |         |         |         |         |       |
| 9:15 AM             |          |           |         |         |         |         |         |         |         |         |         |         |       |
| 9:30 AM<br>9:45 AM  |          |           |         |         |         |         |         |         |         |         |         |         |       |
| 9:45 AW<br>10:00 AM |          |           |         |         |         |         |         |         |         |         |         |         |       |
| 10:15 AM            |          |           |         |         |         |         |         |         |         |         |         |         |       |
| 10:30 AM            |          |           |         |         |         |         |         |         |         |         |         |         |       |
| 10:45 AM            |          |           |         |         |         |         |         |         |         |         |         |         |       |
| 11:00 AM            |          |           |         |         |         |         |         |         |         |         |         |         |       |
| 11:15 AM            |          |           |         |         |         |         |         |         |         |         |         |         |       |
| 11:30 AM            |          |           |         |         |         |         |         |         |         |         |         |         |       |
| 11:45 AM            |          |           |         |         |         |         |         |         |         |         |         |         |       |
| TOTAL               | NL       | NT        | NR      | SL      | ST      | SR      | EL      | ET      | ER      | WL      | WT      | WR      | TOTAL |
| VOLUMES =           | 342      | 0         | 1372    | 0       | 0       | 0       | 0       | 365     | 111     | 1341    | 1162    | 0       | 4693  |
|                     | •        |           |         | 1       |         |         | •       |         |         | •       |         |         |       |
| AM Pea              | ak Hr Be | egins at: | 800     | AM      |         |         |         |         |         |         |         |         |       |
| PEAK                |          |           |         |         |         |         |         |         |         |         |         |         |       |
| VOLUMES =           | 194      | 0         | 710     | 0       | 0       | 0       | 0       | 216     | 65      | 673     | 657     | 0       | 2515  |
| PEAK HR.            |          |           |         |         |         |         |         |         |         |         |         |         |       |
| FACTOR:             | I        | 0.866     |         |         | 0.000   |         | I       | 0.739   |         | 1       | 0.926   |         | 0.944 |

Signalized CONTROL:

# Intersection Turning Movement Prepared by: Southland Car Counters

N-S STREET: Torrey Pines Rd. DATE: 06/08/2006 LOCATION: City of La Jolla

E-W STREET: La Jolla Village Dr. DAY: THURSDAY PROJECT# 06-4132-004

|                                                                                                                                                                                                                                     | NC                                           | ORTHBO   | UND                                                  | SC      | DUTHBOL | JND     | E       | ASTBOU                                               | IND                                          | W                                                    | 'ESTBOU                                             | IND     |                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------|------------------------------------------------------|---------|---------|---------|---------|------------------------------------------------------|----------------------------------------------|------------------------------------------------------|-----------------------------------------------------|---------|------------------------------------------------------|
| LANES:                                                                                                                                                                                                                              | NL<br>2                                      | NT<br>0  | NR<br>0                                              | SL<br>0 | ST<br>0 | SR<br>0 | EL<br>0 | ET<br>3                                              | ER<br>1                                      | WL<br>2                                              | WT<br>2                                             | WR<br>0 | TOTAL                                                |
| 1:00 PM<br>1:15 PM<br>1:30 PM<br>1:45 PM<br>2:00 PM<br>2:15 PM<br>2:30 PM<br>2:45 PM<br>3:00 PM<br>3:15 PM<br>3:30 PM<br>4:45 PM<br>4:00 PM<br>4:15 PM<br>4:30 PM<br>5:00 PM<br>5:15 PM<br>5:00 PM<br>5:15 PM<br>6:30 PM<br>6:30 PM | 19<br>19<br>25<br>22<br>19<br>19<br>19<br>25 |          | 160<br>166<br>158<br>150<br>187<br>155<br>206<br>165 |         |         |         |         | 198<br>190<br>222<br>223<br>273<br>259<br>202<br>172 | 69<br>68<br>73<br>89<br>74<br>78<br>70<br>75 | 214<br>245<br>236<br>206<br>228<br>258<br>213<br>224 | 124<br>110<br>123<br>103<br>123<br>87<br>118<br>126 |         | 784<br>798<br>837<br>793<br>904<br>856<br>828<br>787 |
| TOTAL<br>VOLUMES =                                                                                                                                                                                                                  | NL<br>167                                    | NT<br>O  | NR<br>1347                                           | SL<br>0 | ST<br>0 | SR<br>0 | EL<br>0 | ET<br>1739                                           | ER<br>596                                    | WL<br>1824                                           | WT<br>914                                           | WR<br>0 | TOTAL<br>6587                                        |
|                                                                                                                                                                                                                                     | k Hr Be                                      | gins at: | 430                                                  | PM      |         |         |         |                                                      |                                              |                                                      |                                                     |         |                                                      |
| PEAK<br>VOLUMES =                                                                                                                                                                                                                   | 85                                           | 0        | 650                                                  | 0       | 0       | 0       | 0       | 977                                                  | 314                                          | 928                                                  | 436                                                 | 0       | 3390                                                 |
| PEAK HR.<br>FACTOR:                                                                                                                                                                                                                 |                                              | 0.892    |                                                      |         | 0.000   |         |         | 0.930                                                |                                              |                                                      | 0.950                                               |         | 0.938                                                |

CONTROL: Signalized Transportation Studies, Inc. 1350 Reynolds Avenue Suite 115 Irvine, CA. 92614

City: SAN DIEGO

N-S Direction: TORREY PINES ROAD E-W Direction: GLENBROOK WAY

File Name: H0702013 Site Code : 00003871 Start Date : 2/7/2007

Page No : 1

**Groups Printed-Turning Movements** 

|               |       | Y PINES R | ROAD | GLENI | BROOK W  |      |       | Y PINES F | ROAD | GLEN  |      |      |            |
|---------------|-------|-----------|------|-------|----------|------|-------|-----------|------|-------|------|------|------------|
|               |       | outhbound |      |       | estbound |      |       | orthbound |      | Ę     |      |      |            |
| Start Time    | Right | Thru      | Left | Right | Thru     | Left | Right | Thru      | Left | Right | Thru | Left | Int. Total |
| Factor        | 1.0   | 1.0       | 1.0  | 1.0   | 1.0      | 1.0  | 1.0   | 1.0       | 1.0  | 1.0   | 1.0  | 1.0  |            |
| 07:00 AM      | 9     | 247       | 3    | 3     | 8        | 12   | 5     | 147       | 0    | 2     | 2    | 9    | 447        |
| 07:15 AM      | 8     | 145       | 4    | 5     | 4        | 7    | 12    | 205       | 3    | 1     | 4    | 13   | 411        |
| 07:30 AM      | 10    | 147       | 3    | 5     | 7        | 4    | 18    | 297       | 1    | 2     | 16   | 16   | 526        |
| 07:45 AM      | 10    | 162       | 2    | 9     | 14       | 6    | 16    | 309       | 1    | 1     | 9    | 18   | 557        |
| Total         | 37    | 701       | 12   | 22    | 33       | 29   | 51    | 958       | 5    | 6     | 31   | 56   | 1941       |
| 08:00 AM      | 15    | 155       | 0    | 7     | 4        | 7    | 13    | 234       | 1:   | 2     | 4    | 15   | 457        |
| 08:15 AM      | 15    | 199       | 3    | 1     | 13       | 5    | 13    | 262       | 1 :  | 5     | 4    | 9 :  | 530 🕹      |
| 08:30 AM      | 7     | 166       | 4    | 8     | 7        | 6    | 20    | 250       | 0    | 4     | 5    | 16   | 493        |
| 08:45 AM      | 9     | 166       | 4    | 4     | 8        | 12   | 32    | 239       | 2    | 2     | 17   | 14   | 509        |
| Total         | 46    | 686       | 11   | 20    | 32       | 30   | 78    | 985       | 4    | 13    | 30   | 54   | 1989       |
| *** BREAK *** |       |           |      |       |          |      |       |           |      |       |      |      |            |
| 04:00 PM      | 19    | 217       | 8    | 5     | 8        | 4    | 11    | 188       | 1    | 3     | 8    | 20   | 492        |
| 04:15 PM      | 11    | 250       | 7    | 3     | 9        | 3    | 5     | 164       | 1    | 4     | 9    | 19   | 485        |
| 04:30 PM      | 11    | 263       | 5    | 3     | 4        | 2    | 11    | 218       | 2    | 1     | 11   | 13   | 544        |
| 04:45 PM      | 22    | 300       | 15   | 4     | 9        | 5    | 12    | 162       | 1    | 1     | 8    | 16   | 555        |
| Total         | 63    | 1030      | 35   | 15    | 30       | 14   | 39    | 732       | 5    | 9     | 36   | 68   | 2076       |
| 05:00 PM      | 22    | 277       | 8    | 1     | 10       | 5    | 15    | 143       | 1    | 2     | 9    | 15   | 508        |
| 05:15 PM      | 27    | 302       | 9    | 2     | 9        | 6    | 6     | 156       | 0    | 1     | 8    | 24   | 550        |
| 05:30 PM      | 27    | 306       | 14   | 2     | 9        | 4    | 12    | 166       | 3    | 0     | 8    | 12   | 563        |
| 05:45 PM      | 12    | 263       | 1    | 5     | 9        | 6    | 6     | 168       | 3    | 1     | 5    | 21   | 500        |
| Total         | 88    | 1148      | 32   | 10    | 37       | 21   | 39    | 633       | 7    | 4     | 30   | 72   | 2121       |
| Grand Total   | 234   | 3565      | 90   | 67    | 132      | 94   | 207   | 3308      | 21   | 32    | 127  | 250  | 8127       |
| Apprch %      | 6.0   | 91.7      | 2.3  | 22.9  | 45.1     | 32.1 | 5.9   | 93.6      | 0.6  | 7.8   | 31.1 | 61.1 |            |
| Total %       | 2.9   | 43.9      | 1.1  | 8.0   | 1.6      | 1.2  | 2.5   | 40.7      | 0.3  | 0.4   | 1.6  | 3.1  |            |

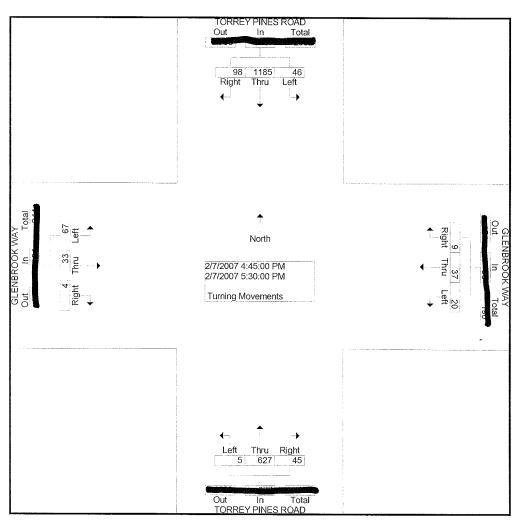

ON NOTO LOSS

#### Transportation Studies, Inc. 1350 Reynolds Avenue Suite 115 Irvine, CA. 92614

File Name : H0702013 Site Code : 00003871 Start Date : 2/7/2007

Page No : 2

| -               | TORREY PINES ROAD<br>Southbound |         |         |               |           | GLENBROOK WAY<br>Westbound |      |               |       |      | INES R | OAD           | Gl       |      |      |               |               |
|-----------------|---------------------------------|---------|---------|---------------|-----------|----------------------------|------|---------------|-------|------|--------|---------------|----------|------|------|---------------|---------------|
| Start Time      | Right                           | Thru    | Left    | App.<br>Total | Right     | Thru                       | Left | App.<br>Total | Right | Thru | Left   | App.<br>Total | Right    | Thru | Left | App.<br>Total | Int.<br>Total |
| Peak Hour Fro   | m 07:00                         | ) AM to | 08:45 A | M - Pea       | ak 1 of 1 |                            |      |               |       |      |        |               | i        |      |      |               |               |
| Intersection    | 07:30                           | AΜ      |         |               |           |                            |      |               | :     |      |        |               |          |      |      |               |               |
| Volume          | 50                              | 663     | 8       | 721           | 22        | 38                         | 22   | 82            | 60    | 1102 | 4      | 1166          | 10       | 33   | 58   | 101           | 2070          |
| Percent         | 6.9                             | 92.0    | 1.1     |               | 26.8      | 46.3                       | 26.8 |               | 5.1   | 94.5 | 0.3    |               | 9.9      | 32.7 | 57.4 |               | 20.0          |
| 07:45<br>Volume | 10                              | 162     | 2       | 174           | 9         | 14                         | 6    | 29            | 16    | 309  | 1      | 326           | 1        | 9    | 18   | 28            | 557           |
| Peak Factor     |                                 |         |         |               |           |                            |      |               |       |      |        |               |          |      |      |               | 0.929         |
| High Int.       | 08:15                           | ΔM      |         |               | 07:45     | AM                         |      |               | 07:45 | AM   |        |               | 07:30 AM |      |      |               | 0.020         |
| Volume          | 15                              | 199     | 3       | 217           | 9         | 14                         | 6    | 29            | 16    | 309  | 1      | 326           | 2        | 16   | 16   | 34            |               |
| Peak Factor     |                                 |         |         | 0.831         |           |                            |      | 0.707         |       |      |        | 0.894         |          |      |      | 0.743         |               |




#### Transportation Studies, Inc. 1350 Reynolds Avenue Suite 115 Irvine, CA. 92614

File Name : H0702013 Site Code : 00003871 Start Date : 2/7/2007

Page No : 3

|                       | TOF     |        | INES R<br>bound | OAD           | GLENBROOK WAY<br>Westbound |      |      |               | TORREY PINES ROAD  Northbound |      |      |               | Gl    |      |      |               |               |
|-----------------------|---------|--------|-----------------|---------------|----------------------------|------|------|---------------|-------------------------------|------|------|---------------|-------|------|------|---------------|---------------|
| Start Time            | Right   | Thru   | Left            | App.<br>Total | Right                      | Thru | Left | App.<br>Total | Right                         | Thru | Left | App.<br>Total | Right | Thru | Left | App.<br>Total | Int.<br>Total |
| Peak Hour Fro         | m 04:00 | OPM to | 05:45 F         | M - Pea       | ak 1 of 1                  |      |      |               | ·                             |      |      |               | h=    |      |      |               |               |
| Intersection          | 04:45   | PM     |                 |               |                            |      |      |               |                               |      |      |               |       |      |      |               |               |
| Volume                | 98      | 1185   | 46              | 1329          | 9                          | 37   | 20   | 66            | 45                            | 627  | 5    | 677           | 4     | 33   | 67   | 104           | 2176          |
| Percent               | 7.4     | 89.2   | 3.5             |               | 13.6                       | 56.1 | 30.3 |               | 6.6                           | 92.6 | 0.7  |               | 3.8   | 31.7 | 64.4 |               |               |
| 05:30<br>Volume       | 27      | 306    | 14              | 347           | 2                          | 9    | 4    | 15            | 12                            | 166  | 3    | 181           | 0     | 8    | 12   | 20            | 563           |
| Peak Factor           |         |        |                 |               |                            |      |      |               |                               |      |      |               |       |      |      |               | 0.966         |
| High Int.             | 05:30   | PM     |                 |               | 04:45                      | PM   |      |               | 05:30                         | PM   |      |               | 05:15 | PM   |      |               |               |
| Volume<br>Peak Factor | 27      | 306    | 14              | 347<br>0.957  | 4                          | 9    | 5    | 18<br>0.917   | 12                            | 166  | 3    | 181<br>0.935  | 1     | 8    | 24   | 33<br>0.788   |               |

