27-Jan-2009
Press Release

Research Teams at J. Craig Venter Institute and Ludwig Institute for Cancer Research Uncover New Chromosomal Alterations in Cancer Using Transcriptome Sequencing Approach

ROCKVILLE, MD and NEW YORK, NY — January 27, 2009 — Researchers from the J. Craig Venter Institute (JCVI) and the Ludwig Institute for Cancer Research (LICR) have uncovered new genomic alterations that lead to gene fusions in a breast cancer cell line by using 454 Life Sciences sequencing technology. The work, led by Qi Zhao of JCVI and Otavia L. Caballero, of LICR, is being published the week of January 26 in the early online edition of the Journal of the Proceedings of the National Academy of Sciences (PNAS).

Previous studies have shown that gene fusions are key gene alteration events in the development and progression of many kinds of cancers. The discovery of the best known gene fusion, BCR-ABL, led to the development of Gleevec® for the treatment of chronic myelogenous leukemia and other cancers.

In this proof of concept study the researchers focused on the transcriptome, a subset of genes in the genome that code for proteins. It has long been known that cancers arise from various types of genomic changes in certain cells. Continued advances and cost efficiencies of next generation DNA sequencing technologies are enabling this more precise and detailed examination of changes in the human genome that could be directly involved in cancer.

The JCVI/LICR researchers began with a well-characterized breast cancer cell line, HCC1954 and performed high-throughput transcriptome sequencing. Previous studies on this cell line have uncovered certain types of genetic mutations and chromosomal abnormalities associated with breast cancer. By conducting the in-depth transcript sequencing in this study and comparing these data to the previous studies a clearer picture is emerging of all the expressed genes some of which present in altered forms in the cancer cell line.

The team began by generating more than half a million 454 reads of cDNA sequences. After extensive data mining, the team uncovered 496 sequences that indicate chromosomal translocations. Of these 496, the team characterized 208 as inter-chromosomal abnormalities and 210 were intra-chromosomal abnormalities. From here the team performed more detailed validation experiments with a control cell line (HCC1954 BL).

Through further analysis the team confirmed six inter-chromosomal changes and one intra-chromosomal change that have the potential to affect the protein producing ability of at least nine genes. The researchers also discovered that chromosome 8 in the cancer cell line seemed to be very involved in some of the genomic rearrangements. This data confirms earlier studies showing that genomic instability in this area is implicated in breast and prostate cancers.

Most genes involved in the discovered chromosomal rearrangement events in this study have been implicated in cancers, such as the MRE11A protein that is associated with mutations in many types of tumors including in breast cancer. The team also identified the SAMD12 gene as being involved in both inter- and intra-chromosomal rearrangements. While not previously thought to play a role in the development of cancer, this study showed that this gene might be implicated in cancer.

The team concluded that transcriptome sequencing with next generation sequencing technologies such as the 454 Life Sciences platform is very adept at finding genomic rearrangements and mutations associated with cancers. With deeper sequencing coverage this approach could be a powerful and efficient way to discover all events associated with expressed genes including gene fusions, somatic mutations and alternative trans-splicing that lead to the development of cancer.

Robert Strausberg, Ph.D., Deputy Director of the JCVI and leader of the Human Genomic Medicine team noted, "This approach reveals alterations in the cancer genome within the active genes of cancer cells. Through the comparison with related normal cells we can glean those that are specific to cancer cells, thereby revealing their unique biology, as well as suggesting new approaches to detection, diagnosis and treatment of cancers."

According to Andrew Simpson, Ph.D., Scientific Director of the LICR, "These studies are an important component of the Hilton-Ludwig Cancer Metastasis Initiative, focused on preventing and treating cancer metastasis. This program brings together interdisciplinary teams of expert scientists, working together to improve the lives of cancer patients. The current study represents one aspect of our teams' creative approach in revealing previously unknown features of cancer that together will provide a platform for cancer prevention and intervention."

About the J. Craig Venter Institute

The JCVI is a not-for-profit research institute in Rockville, MD and La Jolla, CA dedicated to the advancement of the science of genomics; the understanding of its implications for society; and communication of those results to the scientific community, the public, and policymakers. Founded by J. Craig Venter, Ph.D., the JCVI is home to approximately 400 scientists and staff with expertise in human and evolutionary biology, genetics, bioinformatics/informatics, information technology, high-throughput DNA sequencing, genomic and environmental policy research, and public education in science and science policy. The legacy organizations of the JCVI are: The Institute for Genomic Research (TIGR), The Center for the Advancement of Genomics (TCAG), the Institute for Biological Energy Alternatives (IBEA), the Joint Technology Center (JTC), and the J. Craig Venter Science Foundation. The JCVI is a 501 (c) (3) organization. For additional information, please visit http://www.weizhongli-lab.org.

About Ludwig Institute for Cancer Research

The Ludwig Institute for Cancer Research (LICR) is the largest international academic institute dedicated to understanding and controlling cancer. With nine Branches in seven countries, and numerous Affiliates and Clinical Trial Centers in many others, the scientific network that is LICR quite literally covers the globe. The uniqueness of LICR lies not only in its size and scale, but also in its philosophy and ability to drive its results from the laboratory into the clinic. LICR has developed an impressive portfolio of reagents, knowledge, expertise, and intellectual property, and has also assembled the personnel, facilities, and practices necessary to patent, clinically evaluate, license, and thus translate, the most promising aspects of its own laboratory research into cancer therapies.

Media Contacts

JCVI: Heather Kowalski, [email protected], 301-943-8879

LICR: Sarah L. White, [email protected], 212-450-1543

#     #     #