Scientists at the J. Craig Venter Institute Publish Paper Outlining Efficient Synthetic Biology Methods to Genetically Engineer Microalgae
Results have important implications in developing algae-based products such as biofuels and chemicals
LA JOLLA, CA – April 21, 2015 – Scientists from the J. Craig Venter Institute (JCVI), a not-for-profit genomic research organization, published a paper today outlining new synthetic biology methods to manipulate a type of microalgae called diatoms. The researchers, led by first author Bogumil Karas, Ph.D. and senior author Philip Weyman, Ph.D., conclude that these new and efficient methods will enable better understanding of diatom genetics and thus facilitate advances in engineering these microoganisms to produce important products such as biofuels and chemicals. The paper titled, “Designer diatom episomes delivered by conjugation,” was published April 21st in Nature Communications.
Microalgae are some of the most abundant and important organisms in aquatic ecosystems. They use light energy to produce lipids for growth and other cellular functions. While they do this efficiently enough for their own survival, they do not do this naturally at a scale that enables lipid biofuel and chemical production that is cost competitive with current fossil fuel prices.
While many researchers are working on ways to enhance diatoms and increase lipid production, there have not been efficient tools for large scale DNA delivery that can enable effective genetic engineering methodology in diatoms like those that exist for two main synthetic biology model organisms, Escherichia coli (E. coli) and Saccharomyces cerevisiae (yeast).
The JCVI-led team, some of whom are experts in diatom biology and others with expertise in synthetic biology, set out to discover and develop efficient genetic modification tools using episomes or plasmids. They were initially looking for diatom DNA sequences that allowed for plasmid replication but instead identified a yeast plasmid that replicates in diatoms and functions like an artificial chromosome.
The researchers then demonstrated that E. coli employs a mating process called conjugation that can be used to transfer the plasmid to the diatom. This is a very rapid and efficient genetic transfer process. The team then observed that E. coli can transfer plasmids into two genetically different diatom species, P. tricornutum and T. pseudonana, and that the plasmids replicate stably in both species.
In addition to the implications of their work in biotechnology applications, the team also concluded that the research likely sheds light into the evolution of diatoms and adds more evidence to the notion that conjugation is an important influence on microbial ecology in oceans.
“This technology is so easy to use and does not require any expensive reagents or equipment. It really lowers the barriers to genetic manipulation of algae so that any laboratory studying diatoms can do this,” said senior author Dr. Weyman.
Researchers from the Scripps Institution of Oceanography, University of California, San Diego and the National Center for Microscopy and Imaging Research, UC San Diego also contributed to the work in this paper.
This research is supported by funds from the company, Synthetic Genomics Inc., the United States Department of Energy and the Gordon and Betty Moore Foundation.
About J. Craig Venter Institute
The JCVI is a not-for-profit research institute in Rockville, MD and La Jolla, CA dedicated to the advancement of the science of genomics; the understanding of its implications for society; and communication of those results to the scientific community, the public, and policymakers. Founded by J. Craig Venter, Ph.D., the JCVI is home to approximately 200 scientists and staff with expertise in human and evolutionary biology, genetics, bioinformatics/informatics, information technology, high-throughput DNA sequencing, genomic and environmental policy research, and public education in science and science policy. The JCVI is a 501 (c)(3) organization. For additional information, please visit http://www.weizhongli-lab.org.
Media Contact
Heather Kowalski
858-361-0466
[email protected]